Codeforces 题面传送门 & 洛谷题面传送门

智商掉线/ll

本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题。

Conclusion. 在最优方案中,至多只有一个数组只有部分被选,其余数组要么全选要么全都不选。

证明:考虑调整。假设存在两个数组 \(x,y\) 分别选了前 \(p,q\) 个元素,这里不妨假设 \(a_{x,p+1}\ge a_{y,q+1}\),那么考虑从 \(y\) 数组中拎 \(l=\min(len_x-p,q)\) 个元素到 \(x\) 中,那么答案的增量

\[\Delta=\sum\limits_{i=1}^la_{x,p+i}-\sum\limits_{i=1}^la_{y,q-i+1}
\]

由于 \(a_x,a_y\) 均为单调数组并且 \(a_{x,p+1}\ge a_{y,q+1}\),故 \(a_{x,p+i}\ge a_{y,q-i+1}\),因此 \(\Delta\ge 0\) 必然成立。如此调整下去即可得证。

有了这个性质之后如何求解答案呢?一个很自然的想法是对前后缀分别跑一遍背包,然后枚举那个选了一部分的数组及其选择的长度,然后用背包合并的技巧合并。但这样复杂度是三方的,如果将 \(n,k\) 视作同阶。一脸过不去的样子。考虑优化,注意到对于背包而言,其合并的复杂度可能很高,达到平方,但插入的复杂度并不算高,因此考虑分治,具体来说当分治一个区间时,我们记 \(mid=\lfloor\dfrac{l+r}{2}\rfloor\),然后将 \([l,mid]\) 中数组插入背包,分治 \([mid+1,r]\),然后将背包还原成原来的样子,插入 \([mid+1,r]\) 中的数组,分治 \([l,mid]\),再复原即可实现 \(nk\log n\) 的复杂度。

感觉我博客里有 114514191981019260817998244353 个“找性质”啊,为啥我这类找性质的题目还是做不出来呢?zibile,zabanna/dk

const int MAXN=3000;
int n,k,len[MAXN+5];
ll sum[MAXN+5],res=0;
vector<int> a[MAXN+5];
struct knap{
ll dp[MAXN+5];
void clear(){memset(dp,0,sizeof(dp));}
knap(){clear();}
void insert(int v,ll w){for(int i=k;i>=v;i--) chkmax(dp[i],dp[i-v]+w);}
};
knap cur;
void solve(int l,int r){
if(l==r){
ll s=0;
for(int i=0;i<=a[l].size();i++){
if(k>=i) chkmax(res,s+cur.dp[k-i]);
if(i!=a[l].size()) s+=a[l][i];
} return;
} int mid=l+r>>1;knap tmp=cur;
for(int i=l;i<=mid;i++) cur.insert(len[i],sum[i]);
solve(mid+1,r);cur=tmp;
for(int i=mid+1;i<=r;i++) cur.insert(len[i],sum[i]);
solve(l,mid);cur=tmp;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&len[i]);
for(int j=1,x;j<=len[i];j++){
scanf("%d",&x);sum[i]+=x;
a[i].pb(x);
}
} solve(1,n);
printf("%lld\n",res);
return 0;
}

Codeforces 1442D - Sum(找性质+分治+背包)的更多相关文章

  1. Codeforces 360A(找性质)

    反思 写一写可以发现上限不断更新 一直在想怎么判断NO,刻板拘泥于错误的模型,想要像往常一样贪心地.读入当前值就能判断会不会NO,实际上只要构造完以后,最后把所有操作重新跑一遍看会不会冲突即可判断NO ...

  2. CodeChef Sum of distances(分治)

    CodeChef Sum of distances(分治) 题目大意 有一排点,每个点 i 向 \(i + 1, i + 2, i + 3\) 分别连价值为 \(a_i,b_i,c_i\) 的有向边, ...

  3. Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)

    Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...

  4. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  5. Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...

  6. Codeforces 1188E - Problem from Red Panda(找性质+组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 咦,题解搬运人竟是我? 一道很毒的计数题. 先转化下题意,每一次操作我们可以视作选择一种颜色并将其出现次数 \(+k\),之后将所有颜色的 ...

  7. Codeforces 698F - Coprime Permutation(找性质)

    Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这个 D1F 比某道 jxd 作业里的 D1F 质量高多了啊,为啥这场的 D 进了 jxd 作业而这道题没进/yun 首先这 ...

  8. Codeforces 1067E - Random Forest Rank(找性质+树形 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不知道能不能算上自己 AC 的 D1E(?) 挺有意思的结论题,结论倒是自己猜出来了,可根本不会证( 开始搬运题解 ing: 碰到这样 ...

  9. Codeforces 1225G - To Make 1(bitset+状压 dp+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 还是做题做太少了啊--碰到这种题一点感觉都没有-- 首先我们来证明一件事情,那就是存在一种合并方式 \(\Leftrightarrow\) ...

随机推荐

  1. ZK(ZooKeeper)分布式锁实现

    点赞再看,养成习惯,微信搜索[牧小农]关注我获取更多资讯,风里雨里,小农等你. 本文中案例都会在上传到git上,请放心浏览 git地址:https://github.com/muxiaonong/Zo ...

  2. 剑指offer:JZ9 用两个栈实现队列

    JZ9 用两个栈实现队列 描述 用两个栈来实现一个队列,使用n个元素来完成 n 次在队列尾部插入整数(push)和n次在队列头部删除整数(pop)的功能. 队列中的元素为int类型.保证操作合法,即保 ...

  3. RabbitMQ设计原理解析

    背景 RabbitMQ现在用的也比较多,但是没有过去那么多啦.现在很多的流行或者常用技术或者思路都是从过去的思路中演变而来的.了解一些过去的技术,对有些人来说可能会产生众里寻他千百度的顿悟,加深对技术 ...

  4. C++学习笔记之pimpl用法详解

    原文链接:https://www.jb51.net/article/122557.htm 在编写稳定代码是,管理好代码间的依赖性是不可缺少的一个环节.特别是库文件的编写中,减少代码间的依赖性可以提供一 ...

  5. Linux基础入门级命令文档

    Linux系统上命令的使用格式,及常用命令示例 1.命令提示符 登录系统后,第一眼看到的内容是: [root@node01 ~]# 上图就是 Linux 系统的命令提示符.那么,这个提示符的含义是什么 ...

  6. 彻底搞通TCP滑动窗口

    在我们当初学习网络编程的时候,都接触过TCP,在TCP中,对于数据传输有各种策略,比如滑动窗口.拥塞窗口机制,又比如慢启动.快速恢复.拥塞避免等.通过本文,我们将了解滑动窗口在TCP中是如何使用的. ...

  7. 利用Ambari平台安装与部署Hadoop

    * 本篇是利用Ambari平台安装与部署Hadoop,如果需要原生部署Hadoop,请点击以下地址: https://www.cnblogs.com/live41/p/15467263.html 一. ...

  8. Access的分页代码

    if giPage = 1 then begin sSQL := 'SELECT TOP 10 * FROM dw_demo WHERE '+sWhere +' ORDER BY '+sOrder+' ...

  9. InnoDB存储引擎的锁

    InnoDB存储引擎的锁 锁的类型 锁的类型包括: 1.     共享锁(S lock),允许事务读取一行数据 2.     排他锁(X lock),允许事务删除或更新一行数据 锁的兼容性a X S ...

  10. 编译安装mysql和zabbix,xtrabackup数据库备份

    xtrabackup参考文章 https://www.cnblogs.com/linuxk/p/9372990.html 下载5.7的mysql 社区版包 https://cdn.mysql.com/ ...