题目

第一类区间DP模板题。

所谓第一类区间DP,是指合并型区间DP,状态转移方程一般形如 \(f_{i,j}=\max{f_{i,k}+f_{k+1,j}+cost_{i,j}}\) ,时间复杂度一般是 \(O(n^3)\)。

这道题因为在环上,不能直接套板子,我们考虑:

  1. 断环成链,时间复杂度 \(O(n^4)\) 。如果加火车头之类的东西的话勉强能卡过去。
  2. 倍长原环,做完DP以后在长度为 \(n\) 的 \(n\) 个区间内找最优解。时间复杂度 \(O(n^3)\),可以通过本题。

就本题而言,状态转移方程可以套用板子。\(f_{i,j}=\max{f_{i,k}+f_{k+1,j}+\begin{matrix} \sum_{m=i}^j a[m] \end{matrix}}\)。

代码:

#include<stdio.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define swap(a, b) ((a) ^= (b) ^= (a) ^= (b))
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
int n, a[210], sum[210];
int f1[210][210], f2[210][210];
int main() {
ll ans = 1ll << 50;
read(n);
rep(i, 1, n) read(a[i]), a[i + n] = a[i];
rep(i, 1, n + n) sum[i] = sum[i - 1] + a[i];
rep(i, 1, 2 * n) rep(j, 1, 2 * n) {
if(i == j) f1[i][j] = 0;
else f1[i][j] = 1 << 29;
f2[i][j] = 0;
}
rep(len, 1, n) {
rep(i, 1, n * 2 - len - 1) {
ri j = i + len - 1;
rep(k, i, j - 1) {
f1[i][j] = min(f1[i][j], f1[i][k] + f1[k + 1][j] + sum[j] - sum[i - 1]);
f2[i][j] = max(f2[i][j], f2[i][k] + f2[k + 1][j] + sum[j] - sum[i - 1]);
}
}
}
rep(i, 1, n) ans = min(ans, f1[i][i + n - 1]);
print(ans);
puts("");
ans = 0;
rep(i, 1, n) ans = max(ans, f2[i][i + n - 1]);
print(ans);
}

注意初始化都要开到 \(2\times n\)

洛谷P1880题解的更多相关文章

  1. 石子合并2——区间DP【洛谷P1880题解】

    [区间dp让人头痛……还是要多写些题目练手,抽空写篇博客总结一下] 这题区间dp入门题,理解区间dp或者练手都很妙 ——题目链接—— (或者直接看下面) 题面 在一个圆形操场的四周摆放N堆石子,现要将 ...

  2. [codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版

    codevs1048: 题目大意:有n堆石子排成一列,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价. 解题思路:经典区间dp.设$f[i][j]$表示合并i~j的石子需要的最 ...

  3. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  4. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  5. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  6. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  7. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  8. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  9. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

随机推荐

  1. hive学习笔记之三:内部表和外部表

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. 简述MSTP与配置

    一.简介 二.MSTP概述 三.功能 四.配置命令 一.简介 多生成树协议MSTP(Multiple Spanning Tree Protocol)是IEEE 802.1s中定义的生成树协议,通过生成 ...

  3. Java 提效神器 Stream 的冷门技巧

    Stream 使用这个方法创建一个 Stream 对象. new ArrayList<>().stream() Filter 过滤器,里面传递一个函数,这个函数的返回结果如果为 true ...

  4. 12.QT项目中启用c++11语法支持

    greater Than(QT_MAJOR_VERSION, 4): CONFIG += c++11 less Than(QT_MAJOR_VERSION, 5): QMAKE_CXXFLAGS += ...

  5. 使用VS2017开发APP中使用VUE.js开发遇到打包出来的android文件 在低版本的android(4.3)中无法正常使用

    使用VS2017开发VUE的APP应用遇到的问题集合 1,  打包出来的apk文件在Android 6.0版本以上手机可以正常打开,在Android 4.3版本手机上无法打开 原因:一开始猜测是不是V ...

  6. JUnit5的Tag、Filter、Order、Lifecycle

    Tag JUnit5可以使用@Tag注解给测试类和测试方法打tag,这些tag能用来在执行时进行过滤,它跟group有点类似. tag应该遵循以下规则: 不能为null或者为空. 不能包含空格. 不能 ...

  7. Defense:SMB协议漏洞利用与控制CVE-2017-7494("永恒之蓝")攻防实验

    漏洞描述 1. 服务器打开了文件/打印机共享端口445,让其能够在公网上访问 2. 共享文件拥有写入权限 3. 恶意攻击者需猜解Samba服务端共享目录的物理路径 Samba是在Linux和UNIX系 ...

  8. 第一章 - Java与线程

    目录 01.Java和线程 02.Java与协程 03.CPU缓存结构和java内存模型 04.管程-悲观锁和锁优化 05.乐观锁 - 无锁方案 06.线程安全 07.线程池 08.JUC 09.高并 ...

  9. IDEA+Hadoop2.10.1+Zookeeper3.4.10+Hbase 2.3.5 操作JavaAPI

    在此之前要配置好三节点的hadoop集群,zookeeper集群,并启动它们,然后再配置好HBase环境 本文只是HBase2.3.5API操作作相应说明,如果前面环境还没有配置好,可以翻看我之前的博 ...

  10. 序-WEB方向指南

    WEB 这个方向其实是目前从业人员最多的方向,也是学习安全门槛最低的方向,当然也是最容易恰饭的方向. 我从入行到现在也依旧没有脱离它,毕竟在我这个小城市.小圈子里,不干这个好像就要没饭吃了,但是你说它 ...