题目

第一类区间DP模板题。

所谓第一类区间DP,是指合并型区间DP,状态转移方程一般形如 \(f_{i,j}=\max{f_{i,k}+f_{k+1,j}+cost_{i,j}}\) ,时间复杂度一般是 \(O(n^3)\)。

这道题因为在环上,不能直接套板子,我们考虑:

  1. 断环成链,时间复杂度 \(O(n^4)\) 。如果加火车头之类的东西的话勉强能卡过去。
  2. 倍长原环,做完DP以后在长度为 \(n\) 的 \(n\) 个区间内找最优解。时间复杂度 \(O(n^3)\),可以通过本题。

就本题而言,状态转移方程可以套用板子。\(f_{i,j}=\max{f_{i,k}+f_{k+1,j}+\begin{matrix} \sum_{m=i}^j a[m] \end{matrix}}\)。

代码:

#include<stdio.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define swap(a, b) ((a) ^= (b) ^= (a) ^= (b))
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
int n, a[210], sum[210];
int f1[210][210], f2[210][210];
int main() {
ll ans = 1ll << 50;
read(n);
rep(i, 1, n) read(a[i]), a[i + n] = a[i];
rep(i, 1, n + n) sum[i] = sum[i - 1] + a[i];
rep(i, 1, 2 * n) rep(j, 1, 2 * n) {
if(i == j) f1[i][j] = 0;
else f1[i][j] = 1 << 29;
f2[i][j] = 0;
}
rep(len, 1, n) {
rep(i, 1, n * 2 - len - 1) {
ri j = i + len - 1;
rep(k, i, j - 1) {
f1[i][j] = min(f1[i][j], f1[i][k] + f1[k + 1][j] + sum[j] - sum[i - 1]);
f2[i][j] = max(f2[i][j], f2[i][k] + f2[k + 1][j] + sum[j] - sum[i - 1]);
}
}
}
rep(i, 1, n) ans = min(ans, f1[i][i + n - 1]);
print(ans);
puts("");
ans = 0;
rep(i, 1, n) ans = max(ans, f2[i][i + n - 1]);
print(ans);
}

注意初始化都要开到 \(2\times n\)

洛谷P1880题解的更多相关文章

  1. 石子合并2——区间DP【洛谷P1880题解】

    [区间dp让人头痛……还是要多写些题目练手,抽空写篇博客总结一下] 这题区间dp入门题,理解区间dp或者练手都很妙 ——题目链接—— (或者直接看下面) 题面 在一个圆形操场的四周摆放N堆石子,现要将 ...

  2. [codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版

    codevs1048: 题目大意:有n堆石子排成一列,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价. 解题思路:经典区间dp.设$f[i][j]$表示合并i~j的石子需要的最 ...

  3. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  4. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  5. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  6. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  7. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  8. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  9. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

随机推荐

  1. 20204107 孙嘉临《Python程序设计》实验三报告

    课程:<Python程序设计>班级: 2041姓名: 孙嘉临学号: 20204107实验教师:王志强实验日期:2020年5月24日必修/选修: 公选课## 1.实验内容创建服务端和客户端, ...

  2. js笔记11

    1.针对表单的 from  input  select  textarea type="radio/checkbox/password/button/tetx/submit/reset/&q ...

  3. 关于tinymce的一些记事

    之前能看的懂一部分英文,但是总是没有全局观,以至于我之前使用tinymce一直都有一些疑问:那就是为什么我在tinymce初始化中添加了比如字体,字体大小等设置按钮,但是为什么在前 台没有办法现实出来 ...

  4. 0shell变量

    1.定义变量 2.使用变量 3.修改变量的值 4.将命令的结果赋值给变量 5.只读变量 6.删除变量 一.变量 1.定义变量 在 Bash shell 中,每一个变量的值都是字符串,无论你给变量赋值时 ...

  5. runtime使用总结

    runtime这个东西,项目是很少用到的,但面试又避不可少,了解其内部的机制对底层的理解还是很有必要的. 1.动态添加属性 拓展类别属性的简单实现 a.定义字面量指针 static char dyna ...

  6. java基础---集合(2)

    一. Set 集合 java.util.Set集合是Collection集合的子集合,与List集合平级.该集合中元素没有先后放入次序,且不允许重复. 存储的数据在底层数组中并非按照数组索引的顺序添加 ...

  7. Python单元测试框架unittest之单用例管理(二)

    概述 利用python进行测试时,测试用例的加载方式有2种: 一种是通过unittest.main()来启动所需测试的测试模块,上篇文章就是使用的这种方式: 一种是添加到testsuite集合中再加载 ...

  8. LeetCode解题记录(贪心算法)(二)

    1. 前言 由于后面还有很多题型要写,贪心算法目前可能就到此为止了,上一篇博客的地址为 LeetCode解题记录(贪心算法)(一) 下面正式开始我们的刷题之旅 2. 贪心 763. 划分字母区间(中等 ...

  9. python pip install matplotlib安装模块

    python pip install matplotlib安装模块,可附带安装相关的模块 程序运行提示: from . import _imaging as coreImportError: DLL ...

  10. LeetCode 895. Maximum Frequency Stack

    题目链接:https://leetcode.com/problems/maximum-frequency-stack/ 题意:实现一种数据结构FreqStack,FreqStack需要实现两个功能: ...