摘要:Tensorflow Distributions提供了两类抽象:distributionsbijectors。distributions提供了一系列具备快速、数值稳定的采样、对数概率计算以及其他统计特征计算方法的概率分布。bijectors提供了一系列针对distribution的可组合的确定性变换。

1、Distributions

1.1 methods

一个distribution至少实现以下方法:sample、log_prob、batch_shape_tensor、event_shape_tensor;同时也实现了一些其他方法,例如:cdf、survival_function、quantile、mean、variance、entropy等;Distribution基类实现了给定log_prob计算prob、给定log_cdf计算log_survival_fn的方法。

1.2 shape semantics

将一个tensor的形状分为三个部分:sample shapebatch shapeevent shape

sample shape:描述从给定概率分布上独立同分布的采样形状;

batch shape:描述从概率分布上独立、非同分布的采样形状,也即,我们可以指定一组参数不同的相同分布,batch shape通常用来为机器学习中一个batch的样本每个样本指定一个分布;

event shape:描述从概率分布上单次采样的形状;

1.3 sampling

reparameterization:distributions拥有一个reparameterization属性,这个属性表明了自动化微分和采样之间的关系。目前包括两种:“fully reparameterized” 和 “not reparameterized”。

fully reparameterized:例如,对于分布dist = Normal(loc, scale),采样y = dist.sample()的内部过程为x = tf.random_normal([]); y = scale * x + loc. 样本y是reparameterized的,因为它是参数loc、scale及无参数样本x的光滑函数。

not reparameterized:例如,gamma分布使用接收-拒绝的方式进行采样,是参数的非光滑函数。

end to end automatic differentiation:通过与tensorflow结合,一个fully reparameterized的分布可以进行端到端的自动微分。例如,要最小化分布Y的期望损失E [φ(Y)],可以使用蒙特卡洛近似的方法最小化

这使得我们可以使用SN作为期望损失的估计,还可以使用ΔλSN作为梯度ΔλE [φ(Y)]的估计,其中λ是分布Y的参数。

1.4 high order distributions

 TransformedDistribution:对一个基分布执行一个可逆可微分转换即可得到一个TransformedDistribution。例如,可以从一个Exponential分布得到一个标准Gumbel分布:

standard_gumbel = tfd.TransformedDistribution(
distribution=tfd.Exponential(rate=1.),
bijector=tfb.Chain([
tfb.Affine(
scale_identity_multiplier=-1.,
event_ndims=0),
tfb.Invert(tfb.Exp()),
]))
standard_gumbel.batch_shape # ==> []
standard_gumbel.event_shape # ==> []

基于gumbel分布,可以构建一个Gumbel-Softmax(Concrete)分布:

alpha = tf.stack([
tf.fill([28 * 28], 2.),
tf.ones(28 * 28)]) concrete_pixel = tfd.TransformedDistribution(
distribution=standard_gumbel,
bijector=tfb.Chain([
tfb.Sigmoid(),
tfb.Affine(shift=tf.log(alpha)),
]),
batch_shape=[2, 28 * 28])
concrete_pixel.batch_shape # ==> [2, 784]
concrete_pixel.event_shape # ==> []

Independent:对batch shape和event shape进行转换。例如:

image_dist = tfd.TransformedDistribution(
distribution=tfd.Independent(concrete_pixel),
bijector=tfb.Reshape(
event_shape_out=[28, 28, 1],
event_shape_in=[28 * 28]))
image_dist.batch_shape # ==> [2]
image_dist.event_shape # ==> [28, 28, 1]

Mixture:定义了由若干分布组合成的新的分布,例如:

image_mixture = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(
probs=[0.2, 0.8]),
components_distribution=image_dist)
image_mixture.batch_shape # ==> []
image_mixture.event_shape # ==> [28, 28, 1]

1.5 distribution functionals

functional以一个分布作为输入,输出一个标量,例如:entropy、cross entropy、mutual information、kl距离等。

p = tfd.Normal(loc=0., scale=1.)
q = tfd.Normal(loc=-1., scale=2.)
xent = p.cross_entropy(q)
kl = p.kl_divergence(q)
# ==> xent - p.entropy()

2、Bijectors

2.1 definition

Bijector API提供了针对distribution的可微分双向映射(differentialble, bijective map, diffeomorphism)转换接口。给定随机变量X和一个diffeomorphism F,可以定义一个新的随机变量Y,Y的密度可由下式计算:

其中DF-1是F的Jacobian的逆。(参考:https://zhuanlan.zhihu.com/p/100287713)

每个bijector子类都对应一个F,TransformedDistribution自动计算Y=F(X)的密度。bijector使得我们可以利用已有的分布构建许多其他分布。

bijector主要包含以下三个函数:

forward:实现x → F (x),TransformedDistribution.sample函数使用该函数将一个tensor转换为另一个tensor;

inverse:forward的逆变换,实现y → F-1(y),TransformedDistribution.log_prob使用该函数计算对数概率(上式);

inverse_log_det_jacobian:计算log |DF−1(y)|,TransformedDistribution.log_prob使用该函数计算对数概率(上式);

通过使用bijectors,TransformedDistribution可以自动高效地实现sample、log_prob、prob,对于具有恒定Jacobian的bijector,TransformedDistribution自动实现一些基础统计量,如mean、variance、entropy等。

以下实现了对Laplace的放射变换:

vector_laplace = tfd.TransformedDistribution(
distribution=tfd.Laplace(loc=0., scale=1.),
bijector=tfb.Affine(
shift=tf.Variable(tf.zeros(d)),
scale_tril=tfd.fill_triangular(
tf.Variable(tf.ones(d * (d + 1) / 2)))),
event_shape=[d])

由于tf.Variables,该分布是可学习的。

2.2 composability

bijectors可以构成高阶bijectors,例如Chain、Invert。

chain bijector可以构建一系列丰富的分布,例如创建一个多变量logit-Normal分布:

matrix_logit_mvn =
tfd.TransformedDistribution(
distribution=tfd.Normal(0., 1.),
bijector=tfb.Chain([
tfb.Reshape([d, d]),
tfb.SoftmaxCentered(),
tfb.Affine(scale_diag=diag),
]),
event_shape=[d * d])

Invert可以通过交换inverse和forward函数,高效地将bijectors数量翻倍,例如:

softminus_gamma = tfd.TransformedDistribution(
distribution=tfd.Gamma(
concentration=alpha,
rate=beta),
bijector=tfb.Invert(tfb.Softplus()))

2.3 caching

bijector自动缓存操作的输入输出对,包括log det jacobian。caching的意义时,当inverse计算很慢或数值不稳定或难以实现时,可以高效的执行inverse操作。当计算采样结果的概率是,缓存被触发。如果q(x)是x=f(ε)的密度,且ε~r,那么caching可以降低计算q(xi)的计算成本:

caching机制也可用来进行高效地重要性采样(importance sampling):

3、 应用

3.1 核密度估计(KDE)

例如,可以通过以下代码构建一个由n个mvn_diag分布作为kernel的混合高斯模型,其中每个kernel的权重为1/n。注意,此时Independent会对分布的shape进行重定义(reinterpret),tfd.Normal(loc=x, scale=1.)创建了一个batch_shape = n*d, event_shape = []的分布,对其Independent之后,变为batch_shape = n, event_shape = d的分布。

Independent文档:https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Independent?hl=zh-cn

f = lambda x: tfd.Independent(tfd.Normal(
loc=x, scale=1.))
n = x.shape[0].value
kde = tfd.MixtureSameFamily(
mixture_distribution=tfd.Categorical(
probs=[1 / n] * n),
components_distribution=f(x))

3.2 变分自编码器(VAE)

论文:https://arxiv.org/pdf/1312.6114.pdf

博客:https://spaces.ac.cn/archives/5253

def make_encoder(x, z_size=8):
net = make_nn(x, z_size * 2) return tfd.MultivariateNormalDiag(
loc=net[..., :z_size],
scale=tf.nn.softplus(net[..., z_size:]))) def make_decoder(z, x_shape=(28, 28, 1)):
net = make_nn(z, tf.reduce_prod(x_shape)) logits = tf.reshape(
net, tf.concat([[-1], x_shape], axis=0))
return tfd.Independent(tfd.Bernoulli(logits)) def make_prior(z_size=8, dtype=tf.float32):
return tfd.MultivariateNormalDiag(
loc=tf.zeros(z_size, dtype))) def make_nn(x, out_size, hidden_size=(128, 64)):
net = tf.flatten(x) for h in hidden_size:
net = tf.layers.dense(
net, h, activation=tf.nn.relu)
return tf.layers.dense(net, out_size)

3.3 Edward概率编程

tfd是Edward的后端。以下代码实现一个随机循环神经网络(stochastic rnn),其隐藏状态是随机的。

stochastic rnn论文:https://arxiv.org/pdf/1411.7610.pdf

from edward.models import Normal

z = x = []
z[0] = Normal(loc=tf.zeros(K), scale=tf.ones(K))
h = tf.layers.dense(
z[0], 512, activation=tf.nn.relu)
loc = tf.layers.dense(h, D, activation=None)
x[0] = Normal(loc=loc, scale=0.5)
for t in range(1, T):
inputs = tf.concat([z[t - 1], x[t - 1]], 0)
loc = tf.layers.dense(
inputs, K, activation=tf.tanh)
z[t] = Normal(loc=loc, scale=0.1)
h = tf.layers.dense(
z[t], 512, activation=tf.nn.relu)
loc = tf.layers.dense(h, D, activation=None)
x[t] = Normal(loc=loc, scale=0.5)

Tensorflow Probability Distributions 简介的更多相关文章

  1. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  2. PRML读书会第二章 Probability Distributions(贝塔-二项式、狄利克雷-多项式共轭、高斯分布、指数族等)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Dis ...

  3. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  4. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

  5. Study note for Continuous Probability Distributions

    Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...

  6. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  7. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  8. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  9. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

随机推荐

  1. POJ_2533 Longest Ordered Subsequence 【LIS】

    一.题目 Longest Ordered Subsequence 二.分析 动态规划里的经典问题.重在DP思维. 如果用最原始的DP思想做,状态转移方程为$DP[i] = max(DP[j] + 1) ...

  2. golang io操作之写篇

    /** * @author livalon * @data 2018/9/4 15:11 */ package main import ( "os" "fmt" ...

  3. python文件处理之fileinput

    一.介绍 fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作,我们常用的open函数是对一个文件进行读写操作. fileinput模块的input()函数比open函数更高效和好用 ...

  4. FHRP - 网关冗余协议

    通常情况下,在终端设备进入网络前,都会有一个 Router 充当网络,作为第一跳的网络地址.但假设路由器发生故障,此时终端设备就无法再接入互联网. 为了防止这样的问题,一般会再加入一台路由器充当备份. ...

  5. PTA 求链表的倒数第m个元素

    6-7 求链表的倒数第m个元素 (20 分)   请设计时间和空间上都尽可能高效的算法,在不改变链表的前提下,求链式存储的线性表的倒数第m(>)个元素. 函数接口定义: ElementType ...

  6. PTA 数组循环右移

    6-2 数组循环右移 (20 分)   本题要求实现一个对数组进行循环右移的简单函数:一个数组a中存有n(>)个整数,将每个整数循环向右移m(≥)个位置,即将a中的数据由(a​0​​a​1​​⋯ ...

  7. Windows Service 2016 Datacenter\Stand\Embedded激活方法

    安装好系统后连入互联网之后使用管理员身份打开命令行 输入命令 slmgr /skms kms.03k.org 弹出窗口提示模式修改成功后再输入命令:slmgr /ato 以下为各个版本的key 版本: ...

  8. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  9. 数据结构与算法-江西师范大学865(针对考研or面试)

    可以加我微信chenyoudea免费要江西师范大学865资料全套pdf 目录 第一篇 数据结构与算法(针对考研or面试) 第二篇 真题演练 第三篇 复试 第四篇 推荐阅读 第一篇 数据结构与算法(针对 ...

  10. rpm 和 yum 软件管理

    软件安装总结: 安装软件方式有如下几种: 方式1:编译安装 将源码程序按照需求进行先编译,后安装 缺点: 安装过程复杂,而且很慢 优点: 安装过程可控,真正的按需求进行安装(安装位置.安装的模块都可以 ...