DataFrame的创建
从Spark2.0以上版本开始,Spark使用全新的SparkSession接口替代Spark1.6中的SQLContext及HiveContext接口来实现其对数据加载、转换、处理等功能。SparkSession实现了SQLContext及HiveContext所有功能
SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。SparkSession亦提供了HiveQL以及其他依赖于Hive的功能的支持
可以通过如下语句创建一个SparkSession对象:

scala> import org.apache.spark.sql.SparkSession
scala> val spark=SparkSession.builder().getOrCreate()

在创建DataFrame之前,为了支持RDD转换为DataFrame及后续的SQL操作,需要通过import语句(即import spark.implicits._)导入相应的包,启用隐式转换。
在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame,例如:

spark.read.json("people.json"):读取people.json文件创建DataFrame;在读取本地文件或HDFS文件时,要注意给出正确的文件路径;
spark.read.parquet("people.parquet"):读取people.parquet文件创建DataFrame;
spark.read.csv("people.csv"):读取people.csv文件创建DataFrame。

在“/usr/local/spark/examples/src/main/resources/”这个目录下,这个目录下有两个样例数据people.json和people.txt。people.json文件的内容如下:
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
people.txt文件的内容如下:
Michael, 29
Andy, 30
Justin, 19

scala> import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SparkSession scala> val spark=SparkSession.builder().getOrCreate()
spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@2bdab835 //使支持RDDs转换为DataFrames及后续sql操作
scala> import spark.implicits._
import spark.implicits._ scala> val df = spark.read.json("file:///usr/local/spark/examples/src/main/resources/people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string] scala> df.show()
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+

DataFrame的保存

可以使用spark.write操作,把一个DataFrame保存成不同格式的文件,例如,把一个名称为df的DataFrame保存到不同格式文件中,方法如下:

df.write.json("people.json“)
df.write.parquet("people.parquet“)
df.write.csv("people.csv")

下面从示例文件people.json中创建一个DataFrame,然后保存成csv格式文件,代码如下:

scala> val peopleDF = spark.read.format("json").load("file:///usr/local/spark/examples/src/main/resources/people.json")
scala> peopleDF.select("name", "age").write.format("csv").save("file:///usr/local/spark/mycode/sql/newpeople.csv")

DataFrame的常用操作

//打印模式信息
scala> df.printSchema()
root
|-- age: long (nullable = true)
|-- name: string (nullable = true) //选择多列
scala> df.select(df("name"),df("age"+1).show) //条件过滤
scala> df.filter(df("age") > 20).show() //分组聚合
scala> df.groupBy("age").count().show() //排序
scala> df.sort(df("age").desc).show() //多列排序
scala> df.sort(df.("age").desc,df("name").asc).show() //对列进行重命名
scala> df.select(df("name").as("username"),df("age")).show()

在“/usr/local/spark/examples/src/main/resources/”目录下,有个Spark安装时自带的样例数据people.txt,其内容如下:
Michael, 29
Andy, 30
Justin, 19
现在要把people.txt加载到内存中生成一个DataFrame,并查询其中的数据
在利用反射机制推断RDD模式时,需要首先定义一个case class,因为,只有case class才能被Spark隐式地转换为DataFrame

scala> import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder scala> import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Encoder scala> import spark.implicits._ //导入包,支持把一个RDD隐式转换为一个DataFrame
import spark.implicits._ scala> case class Person(name: String, age: Long) //定义一个case class
defined class Person scala> val peopleDF = spark.sparkContext.textFile("file:///usr/local/spark/examples/src/main/resources/people.txt").map(_.split(",")).map(attributes => Person(attributes(0), attributes(1).trim.toInt)).toDF()
peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: bigint] scala> peopleDF.createOrReplaceTempView("people") //必须注册为临时表才能供下面的查询使用 scala> val personsRDD = spark.sql("select name,age from people where age > 20")
//最终生成一个DataFrame,下面是系统执行返回的信息
personsRDD: org.apache.spark.sql.DataFrame = [name: string, age: bigint] scala> personsRDD.map(t => "Name: "+t(0)+ ","+"Age: "+t(1)).show() //DataFrame中的每个元素都是一行记录,包含name和age两个字段,分别用t(0)和t(1)来获取值 //下面是系统执行返回的信息
+------------------+
| value|
+------------------+
|Name:Michael,Age:29|
| Name:Andy,Age:30|
+------------------+

当无法提前定义case class时,就需要采用编程方式定义RDD模式。
比如,现在需要通过编程方式把people.txt加载进来生成DataFrame,并完成SQL查询。

scala> import org.apache.spark.sql.types._
import org.apache.spark.sql.types._ scala> import org.apache.spark.sql.Row
import org.apache.spark.sql.Row
//生成字段 scala> val fields = Array(StructField("name",StringType,true), StructField("age",IntegerType,true))
fields: Array[org.apache.spark.sql.types.StructField] = Array(StructField(name,StringType,true), StructField(age,IntegerType,true)) scala> val schema = StructType(fields)
schema: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true), StructField(age, IntegerType,true))
//从上面信息可以看出,schema描述了模式信息,模式中包含name和age两个字段
//shcema就是“表头” //下面加载文件生成RDD
scala> val peopleRDD = spark.sparkContext.textFile("file:///usr/local/spark/examples/src/main/resources/people.txt")
peopleRDD: org.apache.spark.rdd.RDD[String] = file:///usr/local/spark/examples/src/main/resources/people.txt MapPartitionsRDD[1] at textFile at <console>:26 //对peopleRDD 这个RDD中的每一行元素都进行解析
scala> val rowRDD = peopleRDD.map(_.split(",")).map(attributes => Row(attributes(0), attributes(1).trim.toInt))
rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at <console>:29
//上面得到的rowRDD就是“表中的记录” //下面把“表头”和“表中的记录”拼装起来
scala> val peopleDF = spark.createDataFrame(rowRDD, schema)
peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: int]
//必须注册为临时表才能供下面查询使用
scala> peopleDF.createOrReplaceTempView("people") scala> val results = spark.sql("SELECT name,age FROM people")
results: org.apache.spark.sql.DataFrame = [name: string, age: int] scala> results.map(attributes => "name: " + attributes(0)+","+"age:"+attributes(1)).show()
+--------------------+
| value|
+--------------------+
|name: Michael,age:29|
| name: Andy,age:30|
| name: Justin,age:19|
+--------------------+

通过JDBC连接数据库
在Linux中启动MySQL数据库
$ service mysql start
$ mysql -u root -p
#屏幕会提示你输入密码
输入下面SQL语句完成数据库和表的创建:

mysql> create database spark;
mysql> use spark;
mysql> create table student (id int(4), name char(20), gender char(4), age int(4));
mysql> insert into student values(1,'Xueqian','F',23);
mysql> insert into student values(2,'Weiliang','M',24);
mysql> select * from student;

下载MySQL的JDBC驱动程序,比如mysql-connector-java-5.1.40.tar.gz
把该驱动程序拷贝到spark的安装目录” /usr/local/spark/jars”下
启动一个spark-shell,启动Spark Shell时,必须指定mysql连接驱动jar包
$ cd /usr/local/spark
$ ./bin/spark-shell \
--jars /usr/local/spark/jars/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar \
--driver-class-path /usr/local/spark/jars/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar
读取MySQL数据库中的数据

scala> val jdbcDF = spark.read.format("jdbc").
| option("url","jdbc:mysql://localhost:3306/spark").
| option("driver","com.mysql.jdbc.Driver").
| option("dbtable", "student").
| option("user", "root").
| option("password", "hadoop").
| load()
scala> jdbcDF.show()
+---+--------+------+---+
| id| name|gender|age|
+---+--------+------+---+
| 1| Xueqian| F| 23|
| 2|Weiliang| M| 24|
+---+--------+------+---+

向MySQL数据库写入数据

import java.util.Properties
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row //下面我们设置两条数据表示两个学生信息
val studentRDD = spark.sparkContext.parallelize(Array("3 Rongcheng M 26","4 Guanhua M 27")).map(_.split(" ")) //下面要设置模式信息
val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))
//下面创建Row对象,每个Row对象都是rowRDD中的一行
val rowRDD = studentRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).trim, p(3).toInt)) //建立起Row对象和模式之间的对应关系,也就是把数据和模式对应起来
val studentDF = spark.createDataFrame(rowRDD, schema) //下面创建一个prop变量用来保存JDBC连接参数
val prop = new Properties()
prop.put("user", "root") //表示用户名是root
prop.put("password", "hadoop") //表示密码是hadoop
prop.put("driver","com.mysql.jdbc.Driver") //表示驱动程序是com.mysql.jdbc.Driver //下面就可以连接数据库,采用append模式,表示追加记录到数据库spark的student表中
studentDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/spark", "spark.student", prop) 

连接Hive读写数据
2.在Hive中创建数据库和表
进入Hive,新建一个数据库sparktest,并在这个数据库下面创建一个表student,并录入两条数据

hive> create database if not exists sparktest;//创建数据库sparktest
hive> show databases; //显示一下是否创建出了sparktest数据库
//下面在数据库sparktest中创建一个表student
hive> create table if not exists sparktest.student(
> id int,
> name string,
> gender string,
> age int);
hive> use sparktest; //切换到sparktest
hive> show tables; //显示sparktest数据库下面有哪些表
hive> insert into student values(1,'Xueqian','F',23); //插入一条记录
hive> insert into student values(2,'Weiliang','M',24); //再插入一条记录
hive> select * from student; //显示student表中的记录

3.连接Hive读写数据
需要修改“/usr/local/sparkwithhive/conf/spark-env.sh”这个配置文件:

export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export CLASSPATH=$CLASSPATH:/usr/local/hive/lib
export SCALA_HOME=/usr/local/scala
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export HIVE_CONF_DIR=/usr/local/hive/conf
export SPARK_CLASSPATH=$SPARK_CLASSPATH:/usr/local/hive/lib/mysql-connector-java-5.1.40-bin.jar

请在spark-shell(包含Hive支持)中执行以下命令从Hive中读取数据:

Scala> import org.apache.spark.sql.Row
Scala> import org.apache.spark.sql.SparkSession
Scala> case class Record(key: Int, value: String)
// warehouseLocation points to the default location for managed databases and tables
Scala> val warehouseLocation = "spark-warehouse”
Scala> val spark = SparkSession.builder().appName("Spark Hive Example").config("spark.sql.warehouse.dir", warehouseLocation).enableHiveSupport().getOrCreate()
Scala> import spark.implicits._
Scala> import spark.sql
//下面是运行结果
scala> sql("SELECT * FROM sparktest.student").show()
+---+--------+------+---+
| id| name|gender|age|
+---+--------+------+---+
| 1| Xueqian| F| 23|
| 2|Weiliang| M| 24|
+---+--------+------+---+

编写程序向Hive数据库的sparktest.student表中插入两条数据:

scala> import java.util.Properties
scala> import org.apache.spark.sql.types._
scala> import org.apache.spark.sql.Row
//下面我们设置两条数据表示两个学生信息
scala> val studentRDD = spark.sparkContext.parallelize(Array("3 Rongcheng M 26","4 Guanhua M 27")).map(_.split(" "))
//下面要设置模式信息
scala> val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))
//下面创建Row对象,每个Row对象都是rowRDD中的一行
scala> val rowRDD = studentRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).trim, p(3).toInt))
//建立起Row对象和模式之间的对应关系,也就是把数据和模式对应起来
scala> val studentDF = spark.createDataFrame(rowRDD, schema)
//查看studentDF
scala> studentDF.show()
+---+---------+------+---+
| id| name|gender|age|
+---+---------+------+---+
| 3|Rongcheng| M| 26|
| 4| Guanhua| M| 27|
+---+---------+------+---+
//下面注册临时表
scala> studentDF.registerTempTable("tempTable") scala> sql("insert into sparktest.student select * from tempTable")

  

DataFrame的创建的更多相关文章

  1. spark DataFrame的创建几种方式和存储

    一. 从Spark2.0以上版本开始,Spark使用全新的SparkSession接口替代Spark1.6中的SQLContext及HiveContext接口来实现其对数据加载.转换.处理等功能.Sp ...

  2. pandas DataFrame的创建方法

    pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...

  3. Pandas Series 与 DataFrame 数据创建

    >>> import pandas as pd >>> import numpy as np >>> print(np.__version__), ...

  4. 大数据学习day24-------spark07-----1. sortBy是Transformation算子,为什么会触发Action 2. SparkSQL 3. DataFrame的创建 4. DSL风格API语法 5 两种风格(SQL、DSL)计算workcount案例

    1. sortBy是Transformation算子,为什么会触发Action sortBy需要对数据进行全局排序,其需要用到RangePartitioner,而在创建RangePartitioner ...

  5. Python 数据处理扩展包: pandas 模块的DataFrame介绍(创建和基本操作)

    DataFrame是Pandas中的一个表结构的数据结构,包括三部分信息,表头(列的名称),表的内容(二维矩阵),索引(每行一个唯一的标记). 一.DataFrame的创建 有多种方式可以创建Data ...

  6. DataFrame创建

    DataFrame/DataSet 创建 读文件接口 import org.apache.spark.sql.SparkSession val spark = SparkSession .builde ...

  7. DataFrame概念与创建

    一 概念 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: Dat ...

  8. Pandas 数据结构Dataframe:基本概念及创建

    "二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字 ...

  9. Pandas Series和DataFrame的基本概念

    1,创建Series 1.1,通过iterable创建Series Series接收参数是Iterable,不能是Iterator pd.Series(Iterable) 可以多加一个index参数, ...

随机推荐

  1. Paddle Inference推理部署

    Paddle Inference推理部署 飞桨(PaddlePaddle)是集深度学习核心框架.工具组件和服务平台为一体的技术先进.功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需 ...

  2. CUDA上的量化深度学习模型的自动化优化

    CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参 ...

  3. 旷视MegEngine核心技术升级

    旷视MegEngine核心技术升级 7 月 11 日,旷视研究院在 2020 WAIC · 开发者日「深度学习框架与技术生态论坛」上围绕 6 月底发布的天元深度学习框架(MegEngine)Beta ...

  4. 图像超分辨率算法:CVPR2020

    图像超分辨率算法:CVPR2020 Unpaired Image Super-Resolution using Pseudo-Supervision 论文地址: http://openaccess.t ...

  5. C语言代码区错误以及编译过程

    C语言代码区错误 欲想了解C语言代码段会有如何错误,我们必须首先了解编译器是如何把C语言文本信息编译成为可以执行的机器码的. 背景介绍 测试使用的C语言代码 导入标准库,定义宏变量,定义结构体,重命名 ...

  6. Zookeeper 面试题(持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  7. 办公利器!用Python批量识别发票并录入到Excel表格

    辰哥今天来分享一篇办公干货文章:用Python批量识别发票并录入到Excel表格.对于财务专业等学生或者公司财务人员来说,将报账发票等汇总到excel简直就是一个折磨. 尤其是到年底的时候,公司的财务 ...

  8. 创建react项目并集成eslint/prettier/commit-lint

    创建 react 项目 npx create-react-app jira-new --template typescript 如果不想使用 TS,而要用 JS 的话,则删除 -template ty ...

  9. Java8-四个函数式接口(Consumer,Supplier,Predicate,Function)

    Java8---函数式接口 Consumer---消费者(accept方法,Lambda与方法引用返回都是Consumer) Supplier---供给型(get方法,返回数据,与Optional可以 ...

  10. Ruby升级的最新方法/CocoaPods安装

    今天安装cocoapods时候出现了下面的提示 Error installing pods:active support requires Ruby version >= 2.2.0//这个需求 ...