python pandas 读excel类
import pandas as pd
'''特例说明
file1="a20201220.xlsx"
sheetname='Sheet1'
df=pd.read_excel(file1,sheetname,usecols="A:D")#读取第A-D四列所有内容
df=pd.read_excel(file1,sheetname,usecols=[1,3])#读取第1,第3列所有内容
df=pd.read_excel(file1,sheetname,usecols="A:B,D")#读取第A 第B 第D三列所有内容
df=pd.read_excel(file1,sheetname,usecols="A:B,D",header=3,nrows=15)#读取第A 第B 第D的第4行开始的连续15行内容
df=pd.read_excel(file1,sheetname,usecols="A:B,D",nrows=15)#读取第A 第B 第D的第1行开始的连续15行内容
print(df.values)
df=pd.read_excel(file1,sheet_name=None,index_col=0)#读取所有工作表名称
print(type(df))#<class 'dict'>
for i in df:
print(i)#工作表名称'''
class DoExcela:
def do_alldata(self,filename,sheetname,head=None):#返回列表,列表元素是某行内容
df=pd.read_excel(filename,sheetname,header=head)
lb=[]
for i in df.values:
lb.append(i)
return lb
def do_hangdata(self,filename,sheetname,hang,head=None):#指定行号,返回列表,列表元素是指定行的某列内容
df=pd.read_excel(filename,sheetname,header=head)
lb=[]
for i in df.values[hang]:
lb.append(i)
return lb
def do_liexhdata(self,filename,sheetname,lie,head=None):#指定列序号,返回列表,列表元素是指定行的某列内容
df=pd.read_excel(filename,sheetname,header=head)
lb=[]
for i in df[lie].values:
lb.append(i)
return lb
def do_liemingdata(self,filename,sheetname,lie,head=None):#指定列名称,返回列表,列表元素是指定行的某列内容
df=pd.read_excel(filename,sheetname)
lb=[]
for i in df[lie]:
lb.append(i)
return lb
def do_danyuandata(self,file_name:str,sheet_name:str,hang_name:int,lie_name:int):#返回单元格的内容,类型随数据变化
df=pd.read_excel(file_name,sheet_name,header=None)#从第0行读取
data1=df.iloc[hang_name,lie_name]
return data1
def do_sheetname(self,filename):#以列表形式返回所有工作表名称
df=pd.read_excel(filename,sheet_name=None)
return list(df)
def do_sheetshu(self,filename):#以列表形式返回所有工作表名称
df=pd.read_excel(filename,sheet_name=None)
return len(list(df))
#下面的函数是读取指定单元格区域的值存入列表
def do_quyudata(self,file_name:str,sheet_name:str,zsh_name:int,zsl_name:int,yxh_name:int,yxl_name:int):
#变量依次为文件名(表名)、工作表名称、左上行、左上列、右下行、右下列
df=pd.read_excel(file_name,sheet_name,header=None)#从第0行读取
alldata=[]#定义一个装所有数据的空列表
# 获取行索引,如果设置header=None,这里应该改为(1,df.shape[0])
for i in range(zsh_name-1,yxh_name):
#Erowdata={}#定义一个装每行数据的字典
for j in range(zsl_name,yxl_name):#获取列索引
# df.columns[j]获取第j列表头,df.iloc[i,j]获取第i行第j列数据
alldata.append(df.iloc[i,j])
return alldata def do_alldata1(self,file_name:str,sheet_name:str)->'返回一个列表嵌套字典':
'''通过excel表格路径和表单名字获取表单完整数据,以列表内嵌套字典的方式返回'''
# 文件有表头索引是从第二行开始为0,如果设置header=None,索引从
df=pd.read_excel(file_name,sheet_name)#读取
alldata=[]#定义一个装所有数据的空列表
# 获取行索引,如果设置header=None,这里应该改为(1,df.shape[0])
for i in range(df.shape[0]):
rowdata={}#定义一个装每行数据的字典
for j in range(df.shape[1]):#获取列索引
# df.columns[j]获取第j列表头,df.iloc[i,j]获取第i行第j列数据
rowdata[df.columns[j]]=df.iloc[i,j]
alldata.append(rowdata)
# print(alldata)
return alldata
def do_liedata(self,file_name:str,sheet_name:str,lie_name:int)->'返回一个列表嵌套字典':
'''通过excel表格路径和表单名字获取表单完整数据,以列表内嵌套字典的方式返回'''
# 文件有表头索引是从第二行开始为0,如果设置header=None,索引从
df=pd.read_excel(file_name,sheet_name,header=None)#从第一行开始读取
#df=pd.read_excel(file_name,sheet_name)#从第二行开始读取
alldata=[]#定义一个装所有数据的空列表
# 获取行索引,如果设置header=None,这里应该改为(1,df.shape[0]
rowdata=[]#定义一个装每行数据的字典
for i in range(df.shape[0]):
rowdata.append(df.iloc[i,lie_name]) # print(alldata)
return rowdata
def do_hangdata1(self,file_name:str,sheet_name:str,hang_name:int)->'返回一个列表嵌套字典':
'''通过excel表格路径和表单名字获取表单完整数据,以列表内嵌套字典的方式返回'''
# 文件有表头索引是从第二行开始为0,如果设置header=None,索引从
df=pd.read_excel(file_name,sheet_name,header=None)#从第0行读取
#df=pd.read_excel(file_name,sheet_name)#从第一行读取
alldata=[]#定义一个装所有数据的空列表
# 获取行索引,如果设置header=None,这里应该改为(1,df.shape[0]
rowdata=[]#定义一个装每行数据的字典
for i in range(df.shape[1]):
rowdata.append(df.iloc[hang_name,i]) # print(alldata)
return rowdata #下面的函数是读取指定单元格区域的值存入字典:键是显示列的顺序,值是单元格的值
def do_quyudatazj(self,file_name:str,sheet_name:str,zsh_name:int,zsl_name:int,yxh_name:int,yxl_name:int):
#变量依次为文件名(表名)、工作表名称、左上行、左上列、右下行、右下列
df=pd.read_excel(file_name,sheet_name,header=None)#从第0行读取
alldata=[]#定义一个装所有数据的空列表
# 获取行索引,如果设置header=None,这里应该改为(1,df.shape[0])
for i in range(zsh_name-1,yxh_name):
rowdata={}#定义一个装每行数据的字典
for j in range(zsl_name,yxl_name):#获取列索引
# df.columns[j]获取第j列表头,df.iloc[i,j]获取第i行第j列数据
rowdata[df.columns[j]]=df.iloc[i,j]
alldata.append(rowdata)
return alldata
#openpyxl读取excel
from openpyxl import load_workbook
class DoExcel:
def get_data(self, file_name, sheet_name):
wb = load_workbook(file_name) # linux路径
sheet = wb[sheet_name]
test_data = []
for i in range(2, sheet.max_row + 1):
row_data = {}
for j in range(1, sheet.max_column + 1):
row_data[sheet.cell(1, j).value] = sheet.cell(i, j).value
test_data.append(row_data)
return test_data
file1="a20201220.xlsx"
af=DoExcela()
all=af.do_alldata1(file_name=file1,sheet_name="Sheet1")
lie=af.do_liedata(file_name=file1,sheet_name="Sheet1",lie_name=0)
hang=af.do_hangdata1(file_name=file1,sheet_name="Sheet1",hang_name=0)
danyuan=af.do_danyuandata(file_name=file1,sheet_name="Sheet1",hang_name=0,lie_name=3)
quyu=af.do_quyudata(file_name=file1,sheet_name="Sheet1",zsh_name=1,zsl_name=1,yxh_name=4,yxl_name=4)
print(type(hang))
quyu1=af.do_quyudatazj(file_name=file1,sheet_name="Sheet1",zsh_name=1,zsl_name=1,yxh_name=4,yxl_name=4)
for i in hang:
print(type(i))
break
print(danyuan)
for i in quyu:
print("quyu",i)
for i in quyu1:
print("quyu1",i)
print("单行")
for i in hang:
print(i)
#break
hang1=af.do_hangdata(file1,"Sheet1",0)
print("第0行",hang1,type(hang1))
sheet1=af.do_sheetname(file1)
print(sheet1)
sheet2=af.do_sheetshu(file1)
print(sheet2)
all1=af.do_alldata(file1,"Sheet1")
print(all1,type(all1))
lie1=af.do_liexhdata(file1,"Sheet1",0)
print(lie1,type(lie1))
dany=af.do_danyuandata(file1,"Sheet1",2,3)
print(dany,type(dany))
python pandas 读excel类的更多相关文章
- Python Pandas操作Excel
Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...
- Python pandas 获取Excel重复记录
pip install pandas pip install xlrd 大量记录的时候,用EXCEL排序处理比较费劲,EXCEL程序动不动就无响应了,用pands完美解决. # We will use ...
- python pandas读写excel
import pandas as pd import numpy as np df = pd.read_csv("result.csv") # csv # df = pd.read ...
- python pandas写入excel文件
pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas ...
- python xlrd读Excel表
1 xlrd第三方库 注意:xlrd较新版本不支持读xlsx表,需安装1.2.0版本(pip install xlrd==1.2.0)或使用其他库. xlrd库官方文档:https://xlrd.re ...
- 整理总结 python 中时间日期类数据处理与类型转换(含 pandas)
我自学 python 编程并付诸实战,迄今三个月. pandas可能是我最高频使用的库,基于它的易学.实用,我也非常建议朋友们去尝试它.--尤其当你本身不是程序员,但多少跟表格或数据打点交道时,pan ...
- Python利用pandas处理Excel数据的应用
Python利用pandas处理Excel数据的应用 最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...
- Python用Pandas读写Excel
Pandas是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. Pandas官方文档 ...
- 【python基础】利用pandas处理Excel数据
参考:https://www.cnblogs.com/liulinghua90/p/9935642.html 一.安装第三方库xlrd和pandas 1:pandas依赖处理Excel的xlrd模块, ...
随机推荐
- 插件 ExcelWrite 导出Excel格式数据/获取图层
使用ExcelWrite 插件可以导出Excel格式的数据: ExcelFile端口接 文件数据路径 最后面的是文件名,不用写格式 如果存储树形数据,需要 勾选 List To Row 选项: 附: ...
- YOLOv4实用训练实践
YOLOv4实用训练实践 准备工作 推荐使用Ubuntu 18.04 CMake >= 3.8: https://cmake.org/download/ CUDA >= 10.0: htt ...
- Python分析离散心率信号(中)
Python分析离散心率信号(中) 一些理论和背景 心率信号不仅包含有关心脏的信息,还包含有关呼吸,短期血压调节,体温调节和荷尔蒙血压调节(长期)的信息.也(尽管不总是始终如一)与精神努力相关联,这并 ...
- jsp中basa标签的使用
<base href="http://${pageContext.request.serverName}:${pageContext.request.serverPort}${page ...
- 【NX二次开发】开发好几年,还只会用ufusr?其他用户出口函数介绍
用户出口(User Exit)是NX Open 中的一个重要概念.NX在运行过程中某些特定的位置存在规定的出口,当进程执行到这些出口时,NX会自动检查用户是否在此处已定义了指向内部程序位置的环境变量: ...
- 『言善信』Fiddler工具 — 15、使用Fiddler抓取HTTPS请求
目录 1.Fiddler抓取HTTPS过程 2.拓展:SSL/TLS证书握手原理 3.Fiddler抓取HTTPS原理总结 4.Fiddler抓取HTTPS设置 步骤1:配置证书 步骤2:勾选设置 5 ...
- 点分治&cdq分治 总结
游荡的孤高灵魂不需要羁绊之处. 洛谷题单 点分治 前置芝士 树的重心 树分治 例题略解 P3806 [模板]点分治1 板子题,先暴力找到整棵树的重心,然后先求出重心到各点的距离,进而算出他所在树的各个 ...
- Python变量小秘密
变量全都是引用 跟其他编程语言不同,Python的变量不是盒子,不会存储数据,它们只是引用,就像标签一样,贴在对象上面. 比如: >>> a = [1, 2, 3] >> ...
- Jrebel、IDEA的激活与Springloaded使用
又有很长一段时间没写了,这次这篇随笔主要是分享下Jrebel与IDEA的激活方法以及推荐下Jrebel的替代工具Springloaded. 先来说下Jrebel的激活方法吧,之前有同事遇到了Jrebe ...
- 框架篇:分布式全局唯一ID
前言 每一次HTTP请求,数据库的事务的执行,我们追踪代码执行的过程中,需要一个唯一值和这些业务操作相关联,对于单机的系统,可以用数据库的自增ID或者时间戳加一个在本机递增值,即可实现唯一值.但在分布 ...