Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

Input

The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

Output

Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

Example

Input
2
1 1
Output
YES
1
Input
3
6 2 4
Output
YES
0
Input
2
1 3
Output
YES
1

Note

In the first example you can simply make one move to obtain sequence [0, 2] with .

In the second example the gcd of the sequence is already greater than 1.

题意:n个数,n<=1e5,操作:把a[i],a[i+1] 替换成 a[i]-a[i+1],a[i]+a[i+1],问至少要多少次操作才能让整个a数组的最大公约数gcd大于1.

由题目给出操作可知:当gcd(a,b)<=1时,进行操作为:

初始:a  b

第一步:a-b  a+b

第二步:-2b  2a

即两个数最多2步操作就能满足GCD==2。

对于两个偶数,要进行0步操作;对于两个奇数,要进行1步操作;对于一个奇数一个偶数,要进行2步操作。

先把所有“2个奇数成对”的情况计数+1并把两个奇数更新为偶数,然后在重新判断所有“1个奇数1个偶数成对”的情况计数+2。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200050],n,num=0;
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int main(){
cin>>n;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ll ans=gcd(abs(a[1]),abs(a[2]));
for(int i=3;i<=n;i++)\
ans=gcd(ans,abs(a[i]));
if(ans>1) cout<<"YES"<<endl<<0<<endl;
else
{
for(int i=1;i<n;i++)
if(a[i]%2&&a[i+1]%2)
a[i]=0,a[i+1]=0,num++;
for(int i=1;i<n;i++)
if((a[i]%2&&a[i+1]%2==0)||(a[i]%2==0&&a[i]%2))
a[i]=0,a[i+1]=0,num+=2;
cout<<"YES"<<endl<<num<<endl;
}
return 0;
}

CodeForce-798C Mike and gcd problem(贪心)的更多相关文章

  1. Codeforces 798C - Mike and gcd problem(贪心+数论)

    题目链接:http://codeforces.com/problemset/problem/798/C 题意:给你n个数,a1,a2,....an.要使得gcd(a1,a2,....an)>1, ...

  2. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  3. codeforces 798c Mike And Gcd Problem

    题意: 给出一个数列,现在有一种操作,可以任何一个a[i],用a[i] – a[i+1]和a[i]+a[i+1]替代a[i]和a[i+1]. 问现在需要最少多少次操作,使得整个数列的gcd大于1. 思 ...

  4. codeforces 798C.Mike and gcd problem 解题报告

    题目意思:给出一个n个数的序列:a1,a2,...,an (n的范围[2,100000],ax的范围[1,1e9] ) 现在需要对序列a进行若干变换,来构造一个beautiful的序列: b1,b2, ...

  5. CF798 C. Mike and gcd problem

    /* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...

  6. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  7. Codeforces Round #410 (Div. 2)C. Mike and gcd problem

    题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...

  8. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

  9. #410div2C. Mike and gcd problem

    C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  10. Mike and gcd problem CodeForces - 798C (贪心思维+数论)

    题目链接 比较棒的一道题, 题意: 给你一个N个数的数组,让你用尽量少的操作使整个数组的gcd大于1,即gcd(a1 ,a2,,,,an) > 1 如果可以输出YES和最小的次数,否则输出NO ...

随机推荐

  1. 浅谈Java迭代器

    迭代器Iterator 概述: 迭代器(Iterator):它不是一个容器,它是一种用于访问容器的方法,可用于迭代 List.Set和Map等容器. 迭代:一个一个的往外拿. 作用:帮我们遍历或者拿到 ...

  2. 记客户端出现Connect reset问题排查。

    客户访问我们地址出现Connect reset. 网上查询说是服务端关闭,客户端还在读,就会出现Connect reset. 我们就排查为什么服务端会关闭. 网络的同事说收到了客户端的信息,但是被服务 ...

  3. Vue CLI安装报错 npm ERR! Exit handler never called!

    安装Vue CLI时报错: npm install –g vue-cli 试了四种办法 1.把全局安装-g放到后面 npm install @vue/cli –g 2.命令行输入 npm 缓存清理命令 ...

  4. kali 免杀工具shellter安装以及使用

    Shellter 是一款动态 shellcode 注入工具,我们可以将shellcode注入到其它程序上,从而来躲避杀毒软件的查杀.俗称为免杀 官网:https://www.shellterproje ...

  5. Docker中安装了gitlab,忘记了管理员密码,进行管理员密码重置

    重置docker中gitlab中root账号的密码 一.进入Docker的gitlab容器中 1.查看所有容器 docker ps 2.进入gitlab容器中 docker exec -it gitl ...

  6. WPF - 简单的UI框架 - 仪表盘

    源码链接:https://github.com/DuelWithSelf/WPFEffects 参考:https://www.cnblogs.com/duel/p/duel_clock.html 更新 ...

  7. C# Unity容器的使用

    最简单的使用方式(记得安装Unity NuGet包呀) Console.WriteLine("***************Unity容器的初步应用***************" ...

  8. ASP.Net Core Web Api 使用 IdentityServer4 最新版 踩坑记录

    辅助工具 日志追踪包 : Serilog.AspNetCore 源码查看工具 : ILSpy 项目环境 ###: ASP.NetCore 3.1 IdentityServer4 4.0.0+ 主题内容 ...

  9. C# Fakes

    我们为了测试程序的运行逻辑,需要写单元测试来验证程序的逻辑.有的时候我们的逻辑需要依赖于外界的事物(需要一个文件,eg:数据库),我们不可能在运行单元测试的计算机都创建一个数据库,所以这个时候我们就需 ...

  10. LeetCoded第242题题解--java--数组

    数组 数组的优点在于: 构建非常简单 能在 O(1) 的时间里根据数组的下标(index)查询某个元素(连续内存+对象指向数组下标0位置+index能够直接找到元素) 而数组的缺点在于: 构建时必须分 ...