Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

Input

The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

Output

Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

Example

Input
2
1 1
Output
YES
1
Input
3
6 2 4
Output
YES
0
Input
2
1 3
Output
YES
1

Note

In the first example you can simply make one move to obtain sequence [0, 2] with .

In the second example the gcd of the sequence is already greater than 1.

题意:n个数,n<=1e5,操作:把a[i],a[i+1] 替换成 a[i]-a[i+1],a[i]+a[i+1],问至少要多少次操作才能让整个a数组的最大公约数gcd大于1.

由题目给出操作可知:当gcd(a,b)<=1时,进行操作为:

初始:a  b

第一步:a-b  a+b

第二步:-2b  2a

即两个数最多2步操作就能满足GCD==2。

对于两个偶数,要进行0步操作;对于两个奇数,要进行1步操作;对于一个奇数一个偶数,要进行2步操作。

先把所有“2个奇数成对”的情况计数+1并把两个奇数更新为偶数,然后在重新判断所有“1个奇数1个偶数成对”的情况计数+2。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200050],n,num=0;
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int main(){
cin>>n;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ll ans=gcd(abs(a[1]),abs(a[2]));
for(int i=3;i<=n;i++)\
ans=gcd(ans,abs(a[i]));
if(ans>1) cout<<"YES"<<endl<<0<<endl;
else
{
for(int i=1;i<n;i++)
if(a[i]%2&&a[i+1]%2)
a[i]=0,a[i+1]=0,num++;
for(int i=1;i<n;i++)
if((a[i]%2&&a[i+1]%2==0)||(a[i]%2==0&&a[i]%2))
a[i]=0,a[i+1]=0,num+=2;
cout<<"YES"<<endl<<num<<endl;
}
return 0;
}

CodeForce-798C Mike and gcd problem(贪心)的更多相关文章

  1. Codeforces 798C - Mike and gcd problem(贪心+数论)

    题目链接:http://codeforces.com/problemset/problem/798/C 题意:给你n个数,a1,a2,....an.要使得gcd(a1,a2,....an)>1, ...

  2. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  3. codeforces 798c Mike And Gcd Problem

    题意: 给出一个数列,现在有一种操作,可以任何一个a[i],用a[i] – a[i+1]和a[i]+a[i+1]替代a[i]和a[i+1]. 问现在需要最少多少次操作,使得整个数列的gcd大于1. 思 ...

  4. codeforces 798C.Mike and gcd problem 解题报告

    题目意思:给出一个n个数的序列:a1,a2,...,an (n的范围[2,100000],ax的范围[1,1e9] ) 现在需要对序列a进行若干变换,来构造一个beautiful的序列: b1,b2, ...

  5. CF798 C. Mike and gcd problem

    /* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...

  6. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  7. Codeforces Round #410 (Div. 2)C. Mike and gcd problem

    题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...

  8. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

  9. #410div2C. Mike and gcd problem

    C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  10. Mike and gcd problem CodeForces - 798C (贪心思维+数论)

    题目链接 比较棒的一道题, 题意: 给你一个N个数的数组,让你用尽量少的操作使整个数组的gcd大于1,即gcd(a1 ,a2,,,,an) > 1 如果可以输出YES和最小的次数,否则输出NO ...

随机推荐

  1. 第4篇-JVM终于开始调用Java主类的main()方法啦

    在前一篇 第3篇-CallStub新栈帧的创建 中我们介绍了generate_call_stub()函数的部分实现,完成了向CallStub栈帧中压入参数的操作,此时的状态如下图所示. 继续看gene ...

  2. 《高性能利器》-32张图带你解决RocketMQ所有场景问题

    一.RocketMQ的基本原理 RocketMQ基本架构图如下 从这个架构图上我们可以知道,RocketMQ有4块核心部分: NameServer:管理Broker的信息,让使用MQ的系统感知到集群里 ...

  3. RPM包方式安装Oracle21c的方法

    RPM包方式安装Oracle21c的方法 前言 北京时间2021.8.14 Oracle发布了最新的数据库版本Oracle21c, Oracle规划不再发布Oracle20c和Oracle22c, 直 ...

  4. Shellshock 破壳漏洞 Writeup

    破壳漏洞 CVE编号:CVE-2014-6271 题目URL:http://www.whalwl.site:8029/ 提示:flag在服务器根目录 ShellShock (CVE-2014-6271 ...

  5. jpa中使用Query判断条件查询

    jpa中使用Query判断条件查询 @Query(value = " select m.* from mining_area as m " + " where 1 = 1 ...

  6. .net core 微服务参考文章

    网址: https://www.cnblogs.com/edisonchou/p/9124985.html Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.Consul基础介绍 Co ...

  7. 虚拟机--第一章走进java--(抄书)

    这是本人阅读周志明老师的<深入理解Java虚拟机>第二版抄写的,有很多省略,不适合直接阅读,需要阅读请出门左转淘宝,右转京东,支持周老师(侵权请联系删除) 第一章走近java 世界上并没有 ...

  8. return 和 return false 的区别

    return返回null,起到中断方法执行的效果,只要不return false事件处理函数将会继续执行,表单将提交. return false,事件处理函数会取消事件,不再继续向下执行.比如表单将终 ...

  9. java《设计原则-里氏替换原则》

    package dubbo.wangbiao.project.ThreadAndSocket.designprinciples.lishitihuanyuanze.k0; //长方形 public c ...

  10. 老司机带你体验SYS库多种新玩法

    导读 如何更加愉快地利用sys库做一些监控? 快来,跟上老司机,体验sys库的多种新玩法~ MySQL5.7的新特性中,非常突出的特性之一就是sys库,不仅可以通过sys库完成MySQL信息的收集,还 ...