CodeForce-798C Mike and gcd problem(贪心)
Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .
Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.
is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).
Input
The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.
Output
Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.
If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.
Example
2
1 1
YES
1
3
6 2 4
YES
0
2
1 3
YES
1
Note
In the first example you can simply make one move to obtain sequence [0, 2] with .
In the second example the gcd of the sequence is already greater than 1.
题意:n个数,n<=1e5,操作:把a[i],a[i+1] 替换成 a[i]-a[i+1],a[i]+a[i+1],问至少要多少次操作才能让整个a数组的最大公约数gcd大于1.
由题目给出操作可知:当gcd(a,b)<=1时,进行操作为:
初始:a b
第一步:a-b a+b
第二步:-2b 2a
即两个数最多2步操作就能满足GCD==2。
对于两个偶数,要进行0步操作;对于两个奇数,要进行1步操作;对于一个奇数一个偶数,要进行2步操作。
先把所有“2个奇数成对”的情况计数+1并把两个奇数更新为偶数,然后在重新判断所有“1个奇数1个偶数成对”的情况计数+2。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[200050],n,num=0;
ll gcd(ll a,ll b){
return b==0?a:gcd(b,a%b);
}
int main(){
cin>>n;
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ll ans=gcd(abs(a[1]),abs(a[2]));
for(int i=3;i<=n;i++)\
ans=gcd(ans,abs(a[i]));
if(ans>1) cout<<"YES"<<endl<<0<<endl;
else
{
for(int i=1;i<n;i++)
if(a[i]%2&&a[i+1]%2)
a[i]=0,a[i+1]=0,num++;
for(int i=1;i<n;i++)
if((a[i]%2&&a[i+1]%2==0)||(a[i]%2==0&&a[i]%2))
a[i]=0,a[i+1]=0,num+=2;
cout<<"YES"<<endl<<num<<endl;
}
return 0;
}
CodeForce-798C Mike and gcd problem(贪心)的更多相关文章
- Codeforces 798C - Mike and gcd problem(贪心+数论)
题目链接:http://codeforces.com/problemset/problem/798/C 题意:给你n个数,a1,a2,....an.要使得gcd(a1,a2,....an)>1, ...
- Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1
C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...
- codeforces 798c Mike And Gcd Problem
题意: 给出一个数列,现在有一种操作,可以任何一个a[i],用a[i] – a[i+1]和a[i]+a[i+1]替代a[i]和a[i+1]. 问现在需要最少多少次操作,使得整个数列的gcd大于1. 思 ...
- codeforces 798C.Mike and gcd problem 解题报告
题目意思:给出一个n个数的序列:a1,a2,...,an (n的范围[2,100000],ax的范围[1,1e9] ) 现在需要对序列a进行若干变换,来构造一个beautiful的序列: b1,b2, ...
- CF798 C. Mike and gcd problem
/* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...
- 【算法系列学习】codeforces C. Mike and gcd problem
C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...
- Codeforces Round #410 (Div. 2)C. Mike and gcd problem
题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...
- codeforces#410C Mike and gcd problem
题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...
- #410div2C. Mike and gcd problem
C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Mike and gcd problem CodeForces - 798C (贪心思维+数论)
题目链接 比较棒的一道题, 题意: 给你一个N个数的数组,让你用尽量少的操作使整个数组的gcd大于1,即gcd(a1 ,a2,,,,an) > 1 如果可以输出YES和最小的次数,否则输出NO ...
随机推荐
- IOC(概念和原理)
什么是 IOC (1)控制反转,把对象创建和对象之间的调用过程,交给 Spring 进行管理 (2)使用 IOC 目的:为了耦合度降低 (3)做入门案例就是 IOC 实现 IOC 底层原理 xml 解 ...
- Vue响应式原理底层代码模拟实现
整体分析Vue的基本结构如下图所示:(备注:完整代码github地址https://github.com/1512955040/MiniVue) 上图中,为我们模拟最小vue的整体结构,首先创建一个v ...
- 新手安装eclipse或idea后进行配置、快捷键、插件总结
.personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...
- 使用Cobertura做代码覆盖率测试
经验总结:首先要把cobertura.jar包含ant的classpath路径中,其次要求它包含在测试用例的classpath中: 使用cobertura做代码覆盖率测试中出现的问题:覆盖率始终为0, ...
- filebeat+ELK配置及常用操作
背景介绍 最近工作涉及几台新服务器的日志需要接入ELK系统,配置思路如下: 使用Filebeat收集本地日志数据,Filebeat监视日志目录或特定的日志文件,再发送到消息队列到kafka,然后log ...
- Python - typing 模块 —— Any Type
前言 typing 是在 python 3.5 才有的模块 前置学习 Python 类型提示:https://www.cnblogs.com/poloyy/p/15145380.html 常用类型提示 ...
- noip37
为何我对T3情有独钟 T1 不难发现,题目要求的就是 \(ax+by=c\) ,已知 \(a,b,c\) ,求 \(\min\{|a|+|b|\}\) ,那就用扩欧求一组特解,再分情况讨论即可. Co ...
- AspNetCore WebApi
需求 前几天,马老板给小明和小红一个"待办事项"网站,小明负责后端,小红负责前端,并要求网站可以同时在 Windows.和 Linux 上运行. 小明整理了一下"待办事项 ...
- 解决log4net多进程日志文件被占用
<log4net debug="true"> <appender name="RollingLogFileAppender" type=&qu ...
- Eclipse插件 -- 阿里巴巴扫描编码规插件
一.github地址: https://github.com/alibaba/p3c 二..eclipse插件的安装 此处示例采用eclipse,版本为 Neon.1 Release RC3 (4.6 ...