CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY
@article{ma2018characterizing,
title={Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality},
author={Ma, Xingjun and Li, Bo and Wang, Yisen and Erfani, Sarah M and Wijewickrema, Sudanthi and Houle, Michael E and Schoenebeck, Grant and Song, Dawn and Bailey, James},
journal={arXiv: Learning},
year={2018}}
概
本文介绍了一种local intrinsic dimensionality(LID)的指标用以揭示普通样本和对抗样本的本质区别, 这个指标可以用用来进行防御(即在样本进来的时候, 提前预判其是否是对抗样本).
主要内容
已有的一些用来区分普通样本和对抗样本的方法, 诸如KD(核密度估计) 和 BU(贝叶斯不确定度, 这个不是很了解), 但是其效果不明显, 本文提出的LID指标能够在各方面胜过他们.
比如在下图中, KM(k均值距离: 取样本\(x\)到最近的k个样本的距离的平均), 以及核密度估计(KD), 在普通样本和对抗样本上的指标是一致的, 此时无法判断, 而本文的LID的方法却能够判断(LID越大越偏离普通样本).

LID
由一个点为中心, 向外以超距体的方式发散, 其体积\(V\)与边长\(r\)的关系可知
\]
其中\(m\)为维度.
于是有人就想出把这种思想推广到一般的数据(数据的分布可能是一个低维的流形)
定义(LID): 给定样本\(x \in \mathcal{X}\), 令\(R >0\)表示\(x\)到其它样本的距离的随机变量, 并用\(F(r)\)表示概率\(P(R\le r)\), 且假设其关于\(r>0\)连续可微, 则在\(x\)点的距离为\(r\)的LID定义为
\mathrm{LID}_F(r) := \lim_{\epsilon \rightarrow 0} \frac{\log (F((1+\epsilon)\cdot r) / F(r))}{\log (1+\epsilon)}=\frac{r\cdot F'(r)}{F(r)},
\]
若极限存在.
注: 最后一个等式成立, 只需中间式子上下同除以\(\epsilon\)再分别取极限即可(既然二者的极限都存在).
最后,
\mathrm{LID}_F := \lim_{r \rightarrow 0} \mathrm{LID}_F(r).
\]
此即位我们最后要的LID(\(r \rightarrow 0\)是因为我们关注的是局部信息).
LID估计
\widehat{\mathrm{LID}}(x)= - (\frac{1}{k} \sum_{i=1}^k \log \frac{r_i(x)}{r_k(x)})^{-1}.
\]
算法
作者为了利用LID区分对抗样本, 训练了一个分类器. 在预先训练好的网络\(H\)上, 对每一个样本, 第i层的输出为\(H^i(x)\), 对每一层的输出, 我们都计算其LID(这一步会用到别的训练数据)并保存下来. 利用这些提取出来的特征(LID), 训练二分类器(作者采用逻辑斯蒂回归).

实验
1
作者首先分析了, 普通样本(normal), 噪声样本(noisy), 对抗样本(adv)的LID指标, 可以发现,LID对对抗样本很敏感, 下面右图分析了在不同层中提取出来的LID值用于区分对抗样本的成功率.

2
比较了不同方法 KD, BU, KD+BU, LID在不同数据下, 对利用不同攻击方法生成的对抗样本进行区分的效果(途中的指标为AUC, AUC指标越大越好)

3
作者在FGM上计算LID并训练分类器, 再用别的方法生成对抗样本, 再测试效果.

4
作者为了探究每一个batch的大小, 以及超参数\(k\)的影响, 做了实验, 显然batch size大一点比较好.

5
作者最小化下式生成对抗样本,

结果这些样本不能够欺骗过LID.
注: 已经别的文章指出, 其成功的原因在于破坏了梯度, 更改一下损失函数就能攻破.
CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY的更多相关文章
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- KDD2015,Accepted Papers
Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...
- 壁虎书8 Dimensionality Reduction
many Machine Learning problems involve thousands or even millions of features for each training inst ...
- 降维工具箱drtool
工具箱下载:http://leelab.googlecode.com/svn/trunk/apps/drtoolbox/ ——————————————————————————————————————— ...
- matlab 降维工具 转载【https://blog.csdn.net/tarim/article/details/51253536】
降维工具箱drtool 这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1b http://homepage.tudelft.nl/19j49/Matlab_Toolb ...
- t-SNE完整笔记
http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedd ...
- Context Encoder论文及代码解读
经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- 理解 t-SNE (Python)
t-SNE(t-distribution Stochastic Neighbor Embedding)是目前最为流行的高维数据的降维算法. t-SNE 成立的前提基于这样的一个假设:我们现实世界观察到 ...
随机推荐
- day32 HTML
day32 HTML 什么是前端 只要是跟用户打交道的界面都可以称之为前端 # eg:电脑界面, 手机界面,平板界面, 什么是后端? eg:python, java,php,go, 不跟用户直接打交道 ...
- 如果通过 IP 判断是否是爬虫
通过 IP 判断爬虫 如果你查看服务器日志,看到密密麻麻的 IP 地址,你一眼可以看出来那些 IP 是爬虫,那些 IP 是正常的爬虫,就像这样: 在这密密麻麻的日志里面,我们不仅要分辨出真正的爬虫 I ...
- SpringBoot让测试类飞起来的方法
单元测试是项目开发中必不可少的一环,在 SpringBoot 的项目中,我们用 @SpringBootTest 注解来标注一个测试类,在测试类中注入这个接口的实现类之后对每个方法进行单独测试. 比如下 ...
- shell 截取字符串实例教程
本节内容:shell字符串截取方法 1,去掉字符串最左边的字符 [root@jbxue ~]$ vi test.sh 1 STR="abcd" 2 STR=${STR#" ...
- VueAPI 2 (生命周期钩子函数)
所有的生命周期钩子自动绑定 this 上下文到实例中,因此你可以访问数据,对属性和方法进行运算.这意味着你不能使用箭头函数来定义一个生命周期方法. beforeCreate 在实例初始化之后,此时还不 ...
- java客户端的elasticSearch索引库的相关操作
package com.hope.es;import org.elasticsearch.client.transport.TransportClient;import org.elasticsear ...
- feignclient发送get请求,传递参数为对象
feignclient发送get请求,传递参数为对象.此时不能使用在地址栏传递参数的方式,需要将参数放到请求体中. 第一步: 修改application.yml中配置feign发送请求使用apache ...
- 【.NET6】gRPC服务端和客户端开发案例,以及minimal API服务、gRPC服务和传统webapi服务的访问效率大对决
前言:随着.Net6的发布,Minimal API成了当下受人追捧的角儿.而这之前,程序之间通信效率的王者也许可以算得上是gRPC了.那么以下咱们先通过开发一个gRPC服务的教程,然后顺势而为,再接着 ...
- 网络协议之:基于UDP的高速数据传输协议UDT
目录 简介 UDT协议 UDT的缺点 总结 简介 简单就是美.在网络协议的世界中,TCP和UDP是建立在IP协议基础上的两个非常通用的协议.我们现在经常使用的HTTP协议就是建立在TCP协议的基础上的 ...
- ThreadLocal的使用方法
ThreadLocal的使用方法 (2011-10-10 22:05:48) 转载▼ 概述 ThreadLocal是什么呢?其实ThreadLocal并非是一个线程的本地实现版本,它并不是一个 ...