CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY
@article{ma2018characterizing,
title={Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality},
author={Ma, Xingjun and Li, Bo and Wang, Yisen and Erfani, Sarah M and Wijewickrema, Sudanthi and Houle, Michael E and Schoenebeck, Grant and Song, Dawn and Bailey, James},
journal={arXiv: Learning},
year={2018}}
概
本文介绍了一种local intrinsic dimensionality(LID)的指标用以揭示普通样本和对抗样本的本质区别, 这个指标可以用用来进行防御(即在样本进来的时候, 提前预判其是否是对抗样本).
主要内容
已有的一些用来区分普通样本和对抗样本的方法, 诸如KD(核密度估计) 和 BU(贝叶斯不确定度, 这个不是很了解), 但是其效果不明显, 本文提出的LID指标能够在各方面胜过他们.
比如在下图中, KM(k均值距离: 取样本\(x\)到最近的k个样本的距离的平均), 以及核密度估计(KD), 在普通样本和对抗样本上的指标是一致的, 此时无法判断, 而本文的LID的方法却能够判断(LID越大越偏离普通样本).
LID
由一个点为中心, 向外以超距体的方式发散, 其体积\(V\)与边长\(r\)的关系可知
\]
其中\(m\)为维度.
于是有人就想出把这种思想推广到一般的数据(数据的分布可能是一个低维的流形)
定义(LID): 给定样本\(x \in \mathcal{X}\), 令\(R >0\)表示\(x\)到其它样本的距离的随机变量, 并用\(F(r)\)表示概率\(P(R\le r)\), 且假设其关于\(r>0\)连续可微, 则在\(x\)点的距离为\(r\)的LID定义为
\mathrm{LID}_F(r) := \lim_{\epsilon \rightarrow 0} \frac{\log (F((1+\epsilon)\cdot r) / F(r))}{\log (1+\epsilon)}=\frac{r\cdot F'(r)}{F(r)},
\]
若极限存在.
注: 最后一个等式成立, 只需中间式子上下同除以\(\epsilon\)再分别取极限即可(既然二者的极限都存在).
最后,
\mathrm{LID}_F := \lim_{r \rightarrow 0} \mathrm{LID}_F(r).
\]
此即位我们最后要的LID(\(r \rightarrow 0\)是因为我们关注的是局部信息).
LID估计
\widehat{\mathrm{LID}}(x)= - (\frac{1}{k} \sum_{i=1}^k \log \frac{r_i(x)}{r_k(x)})^{-1}.
\]
算法
作者为了利用LID区分对抗样本, 训练了一个分类器. 在预先训练好的网络\(H\)上, 对每一个样本, 第i层的输出为\(H^i(x)\), 对每一层的输出, 我们都计算其LID(这一步会用到别的训练数据)并保存下来. 利用这些提取出来的特征(LID), 训练二分类器(作者采用逻辑斯蒂回归).
实验
1
作者首先分析了, 普通样本(normal), 噪声样本(noisy), 对抗样本(adv)的LID指标, 可以发现,LID对对抗样本很敏感, 下面右图分析了在不同层中提取出来的LID值用于区分对抗样本的成功率.
2
比较了不同方法 KD, BU, KD+BU, LID在不同数据下, 对利用不同攻击方法生成的对抗样本进行区分的效果(途中的指标为AUC, AUC指标越大越好)
3
作者在FGM上计算LID并训练分类器, 再用别的方法生成对抗样本, 再测试效果.
4
作者为了探究每一个batch的大小, 以及超参数\(k\)的影响, 做了实验, 显然batch size大一点比较好.
5
作者最小化下式生成对抗样本,
结果这些样本不能够欺骗过LID.
注: 已经别的文章指出, 其成功的原因在于破坏了梯度, 更改一下损失函数就能攻破.
CHARACTERIZING ADVERSARIAL SUBSPACES USING LOCAL INTRINSIC DIMENSIONALITY的更多相关文章
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- KDD2015,Accepted Papers
Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...
- 壁虎书8 Dimensionality Reduction
many Machine Learning problems involve thousands or even millions of features for each training inst ...
- 降维工具箱drtool
工具箱下载:http://leelab.googlecode.com/svn/trunk/apps/drtoolbox/ ——————————————————————————————————————— ...
- matlab 降维工具 转载【https://blog.csdn.net/tarim/article/details/51253536】
降维工具箱drtool 这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1b http://homepage.tudelft.nl/19j49/Matlab_Toolb ...
- t-SNE完整笔记
http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedd ...
- Context Encoder论文及代码解读
经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...
- 100 Most Popular Machine Learning Video Talks
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45, Gaussian Process Basics, David ...
- 理解 t-SNE (Python)
t-SNE(t-distribution Stochastic Neighbor Embedding)是目前最为流行的高维数据的降维算法. t-SNE 成立的前提基于这样的一个假设:我们现实世界观察到 ...
随机推荐
- python 多态、组合、反射
目录 多态.多态性 多态 多态性 鸭子类型 父类限制子类的行为 组合 面向对象的内置函数 反射 多态.多态性 多态 多态通俗理解起来,就像迪迦奥特曼有三种形态一样,怎么变还是迪迦奥特曼 定义:多态指的 ...
- SpringCloud微服务实战——搭建企业级开发框架(三十一):自定义MybatisPlus代码生成器实现前后端代码自动生成
理想的情况下,代码生成可以节省很多重复且没有技术含量的工作量,并且代码生成可以按照统一的代码规范和格式来生成代码,给日常的代码开发提供很大的帮助.但是,代码生成也有其局限性,当牵涉到复杂的业务逻辑 ...
- 大数据学习day15----第三阶段----scala03--------1.函数(“_”的使用, 函数和方法的区别)2. 数组和集合常用的方法(迭代器,并行集合) 3. 深度理解函数 4 练习(用java实现类似Scala函数式编程的功能(不能使用Lambda表达式))
1. 函数 函数就是一个非常灵活的运算逻辑,可以灵活的将函数传入方法中,前提是方法中接收的是类型一致的函数类型 函数式编程的好处:想要做什么就调用相应的方法(fliter.map.groupBy.so ...
- 02-爬取http://www.allitebooks.org/网站,获取图片url,书名,简介,作者
import requests from lxml import etree from bs4 import BeautifulSoup import json class BookSpider(ob ...
- pyqt5 的串口编写进度
2020.12.18 今天遇到一个问题, 想用回车实现串口数据的发送. 下面这句话是让光标移动到文字的尾部,但是不能够实现. 对QTextEdit控件中的文字改写,或清除后,再调用下面的移动到尾部,就 ...
- Docker学习(三)——Docker镜像使用
Docker镜像使用 当运行容器时,使用的镜像如果在本地中不存在,docker就会自动从docker镜像仓库中下载,默认是从Docker Hub公共镜像源下载. 1.镜像使用 (1)列 ...
- 利用Lombok编写优雅的spring依赖注入代码,去掉繁人的@Autowired
大家平时使用spring依赖注入,都是怎么写的? @Servicepublic class OrderService {@Autowiredprivate UserService userServic ...
- Ibatis中SqlMapClientTemplate和SqlMapClient的区别
SqlMapClientTemplate是org.springframework.orm.ibatis下的 而SqlMapClient是ibatis的 SqlMapClientTemplate是Sql ...
- JDBC(2):JDBC对数据库进行CRUD
一. statement对象 JDBC程序中的Connection用于代表数据库的链接:Statement对象用于向数据库发送SQL语句:ResultSet用于代表Sql语句的执行结果 JDBC中的s ...
- 连接 MySQL 数据库出现问题:The server time zone value ‘�й���ʱ��‘ is unrecogni....
出现问题 The server time zone value '�й���ʱ��' is unrecogni.... 解决方案 在 URL 后面加上 ?serverTimezone=UTC 如下: ...