正题

题目链接:https://www.luogu.com.cn/problem/P4357


题目大意

平面上给出\(n\)个点,求第\(k\)远的点对距离。


解题思路

\(\text{K-Dtree}\)的模板题,但是这里只有二维,大概是每次根据一个维度把\(n\)个点分成两半像线段树一样丢到下面继续分治的思想来构建一棵树。

那么这样分割出来的每个节点的点分割了自己的矩形范围成了两个子节点的矩形范围。

这题的话我们就先构造出\(\text{K-Dtree}\)然后记录一下每个节点的矩形范围。

之后开一个小根堆,里面先丢\(2k\)个\(0\)(因为会算重),然后每次找到的一个点对距离如果比堆顶大就要换一个新的进堆就好了。

这样就保证了堆里存的是前\(2k\)大的点对了,之后每次用矩形范围判断一下新的答案是否在某个子节点的矩形里面。

理论上为了保证复杂度是需要替罪羊重构的,但是这题数据比较小就好很多。

因为\(k\)比较小所以能保证复杂度


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<queue>
#define ll long long
#define pw(x) ((x)*(x))
using namespace std;
const ll N=4e5+10,inf=1e18;
struct point{
ll x[2];
}w[N],p[N];
ll n,k,cnt,opt,mx[N][2],mi[N][2],ls[N],rs[N];
priority_queue<ll> q;
bool cmp(point x,point y)
{return x.x[opt]<y.x[opt];}
ll gdis(point x,point y)
{return pw(x.x[0]-y.x[0])+pw(x.x[1]-y.x[1]);}
ll limd(point x,ll y)
{return max(pw(x.x[0]-mx[y][0]),pw(x.x[0]-mi[y][0]))+max(pw(x.x[1]-mx[y][1]),pw(x.x[1]-mi[y][1]));}
void PushUp(ll x){
ll l=ls[x],r=rs[x];
mx[x][0]=mi[x][0]=w[x].x[0];
mx[x][1]=mi[x][1]=w[x].x[1];
if(l){
for(ll i=0;i<2;i++)mx[x][i]=max(mx[x][i],mx[l][i]);
for(ll i=0;i<2;i++)mi[x][i]=min(mi[x][i],mi[l][i]);
}
if(r){
for(ll i=0;i<2;i++)mx[x][i]=max(mx[x][i],mx[r][i]);
for(ll i=0;i<2;i++)mi[x][i]=min(mi[x][i],mi[r][i]);
}
return;
}
void Build(ll &x,ll l,ll r,ll z){
if(l>r)return;x=++cnt;
ll mid=(l+r)>>1;opt=z;
nth_element(p+l,p+mid,p+r+1,cmp);
w[x]=p[mid];
Build(ls[x],l,mid-1,z^1);
Build(rs[x],mid+1,r,z^1);
PushUp(x);return;
}
void Query(ll x,point v){
if(!x)return;
ll dl=-inf,dr=-inf;
if(ls[x])dl=limd(v,ls[x]);
if(rs[x])dr=limd(v,rs[x]);
ll dis=gdis(w[x],v);
if(dis>-q.top())q.pop(),q.push(-dis);
if(dl>dr){
if(dl>-q.top())Query(ls[x],v);
if(dr>-q.top())Query(rs[x],v);
}
else{
if(dr>-q.top())Query(rs[x],v);
if(dl>-q.top())Query(ls[x],v);
}
return;
}
signed main()
{
scanf("%lld%lld",&n,&k);
for(ll i=1;i<=n;i++)
scanf("%lld%lld",&p[i].x[0],&p[i].x[1]);
ll rt;Build(rt,1,n,0);
for(ll i=1;i<=2*k;i++)q.push(0);
for(ll i=1;i<=n;i++)Query(1,p[i]);
printf("%lld\n",-q.top());
}

P4357-[CQOI2016]K远点对【K-Dtree】的更多相关文章

  1. P4357 [CQOI2016]K远点对(KDTree)

    传送门 又一次产生了KDTree本质就是爆搜的感觉-- 大概就类似于p4169,只不过是从最近点对变成了第\(k\)远点对 我们开一个小根堆,里面放\(k\)个元素,起初全为\(0\),然后每一次都把 ...

  2. P4357 [CQOI2016]K远点对

    题意:给定平面中的 \(n\) 个点,求第 \(K\) 远的点对之间的距离,\(n\leq 1e5,K\leq min(100,\frac{n\times (n-1)}{2})\) 题解:kd-tre ...

  3. BZOJ 4520: [Cqoi2016]K远点对

    4520: [Cqoi2016]K远点对 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 638  Solved: 340[Submit][Status ...

  4. [BZOJ4520][Cqoi2016]K远点对 kd-tree 优先队列

    4520: [Cqoi2016]K远点对 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1285  Solved: 708[Submit][Statu ...

  5. 【BZOJ4520】[Cqoi2016]K远点对 kd-tree+堆

    [BZOJ4520][Cqoi2016]K远点对 Description 已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. Input 输入文件第一行为用空格隔开的两个整数 N, K.接下来 ...

  6. LibreOJ2043 - 「CQOI2016」K 远点对

    Portal Description 给出平面上的\(n(n\leq10^5)\)个整点,求在欧几里得距离下第\(k\)远的点对之间的距离. Solution k-d树+堆. 用小根堆维护当前找到的第 ...

  7. [bzoj4520][Cqoi2016]K远点对_KD-Tree_堆

    K远点对 bzoj-4520 Cqoi-2016 题目大意:已知平面内 N 个点的坐标,求欧氏距离下的第 K 远点对. 注释:$1\le n\le 10^5$,$1\le k\le 100$,$k\l ...

  8. [Cqoi2016]K远点对 K-Dtree

    4520: [Cqoi2016]K远点对 链接 bzoj 思路 用K-Dtree求点的最远距离. 求的时候顺便维护一个大小为2k的小根堆. 不知道为啥一定会对. 代码 #include <bit ...

  9. BZOJ4520 [Cqoi2016]K远点对

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  10. 【bzoj4520】 Cqoi2016—K远点对

    http://www.lydsy.com/JudgeOnline/problem.php?id=4520 (题目链接) 题意 求平面内第K远点对的距离. Solution 左转题解:jump 细节 刚 ...

随机推荐

  1. C# prism 框架

    定义Region (RegionManager) 定义Region 的方式有两种,一个是在XMAL界面指定,另一种这是代码当中指定. RegionManager.RegionName(XMAL) Re ...

  2. 【springboot】事务处理

    转自: https://blog.csdn.net/cp026la/article/details/86496788 扯淡: 复杂的业务逻辑中一个请求可能需要多次操作数据库,要保证一个Service ...

  3. WPF---数据绑定之ValidationRule数据校验综合Demo(七)

     一.概述 我们利用ValidationRule以及ErrorTemplate来制作一个简单的表单验证. 二.Demo 核心思想:我们在ValidationRule中的Validate函数中进行验证, ...

  4. 基于mysql和Java Swing的简单课程设计

    摘要 现代化的酒店组织庞大.服务项目多.信息量大.要想提高效率.降低成本.提高服务质量和管理水平,进而促进经济效益,必须利用电脑网络技术处理宾馆酒店经营数据,实现酒店现代化的信息管理.本次课程设计运用 ...

  5. python turtle的使用

    turtle.pendown() # 放下画笔  turtle.penup() # 抬起画笔  turtle.pensize(int) # 设置画笔宽度,值为整数型  turtle.forward(f ...

  6. Failed to start LSB: Bring up/down错误解决方法

    很多朋友在使用centos7系统时,有时候需要分配多个IP地址,这就涉及到修改网卡配置,但是在修改完网卡配置时,重启网络服务时会出现"Failed to start LSB: Bring u ...

  7. Git(GitHub)配合TortoiseGit使用

    1.首先下载安装配置Git 安装请参照 https://www.cnblogs.com/xueweisuoyong/p/11914045.html 配置请参照 https://www.jianshu. ...

  8. 刷题-力扣-1011. 在 D 天内送达包裹的能力

    1011. 在 D 天内送达包裹的能力 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/capacity-to-ship-packag ...

  9. MySQL-SQL基础-DCL

    mysql> grant select,insert on sakila.* to 'zl'@'localhost' identified by '123'; Query OK, 0 rows ...

  10. js 中连续的 3 个点 three dots (...) in javascript

    这个叫扩展运算符 https://dev.to/sagar/three-dots---in-javascript-26ci 5 种用法 1 function myFunc(...[x, y, z]) ...