正题

题目链接:https://www.luogu.com.cn/problem/P3175


题目大意

开始有一个\(n\)位二进制数\(s=0\),每次有\(p_i\)概率选取数字\(i\)让\(s\)或上这个数字\(i\),求期望多少次能够让\(s\)的\(n\)个位都变为\(1\)。


解题思路

因为是或所以我们只关心最后一个选中的数,设第\(i\)位选中的期望次数为\(E(i)\)的话答案就是\(max\{E(i)\}\)。

又是期望又是\(max\)所以可以直接上\(\text{min-max}\)容斥,答案就是

\[\sum_{T\in S}min\{E(i)\}(i\in T)*(-1)^{|T|+1}
\]

算这个东西的话也就是如果我们选中一个与\(T\)有交集的数就可以退出了。期望次数=1/期望概率。所以我们直接算期望概率

也就是我们要算所有\(\sum_{G\cap T\neq \varnothing}p_{G}\)。\(G\)和\(T\)的交集非空就去掉所有交集为空的,交集为空的就是\(T\)的补集的子集和。

子集和的话就是直接拿\(p\)出来跑一次\(or\)的\(\text{FWT}\)的结果就是子集和了。

时间复杂度\(O(n2^n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1<<21;
const double eps=1e-8;
int n;double cnt[N],p[N],ans;
void FWT_or(double *f,int op){
for(int p=2;p<=n;p<<=1)
for(int k=0,len=p>>1;k<n;k+=p)
for(int i=k;i<k+len;i++)
f[i+len]+=f[i]*op;
return;
}
int main()
{
scanf("%d",&n);
cnt[0]=-1;n=1<<n;
for(int i=0;i<n;i++)
scanf("%lf",&p[i]);
FWT_or(p,1);
for(int i=0;i<n;i++){
if(i)cnt[i]=-cnt[i-(i&-i)];
double e=1-p[(n-1)^i];
if(fabs(e)<eps)continue;
ans+=cnt[i]*(1.0/e);
}
if(ans<eps)printf("INF");
else printf("%.10lf",ans);
}

P3175-[HAOI2015]按位或【min-max容斥,FWT】的更多相关文章

  1. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  2. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  3. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  4. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

  5. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  6. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

  7. luogu P3175 [HAOI2015]按位或

    传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{| ...

  8. [洛谷P3175][HAOI2015]按位或

    题目大意:刚开始有一个数$x=0$,每秒钟有一个数$y\in[0,2^n)(n\leqslant20)$按一定概率随机出现,数$i$的概率为$p_i$,保证$\sum\limits_{i=0}^{2^ ...

  9. 洛谷 P3175 [HAOI2015]按位或

    题目分析 与hdu4336 Card Collector相似,使用min-max容斥. 设\(\max(S)\)表示集合\(S\)中最后一位出现的期望时间. 设\(\min(S)\)表示集合\(S\) ...

随机推荐

  1. gdb调试用命令与一般调试方法

    示例代码 1 #include <iostream> 2 using namespace std; 3 4 void Print() 5 { 6 cout<<"hel ...

  2. Redis(三):新数据类型

    配置文件redis.conf详解 bind=127.0.0.1 # 表示只能在本机中访问redis,将该行注释掉,即可接收任何IP地址的访问 protected-mode # 设置为no,表示关闭保护 ...

  3. SpringBoot应用中使用AOP记录接口访问日志

    SpringBoot应用中使用AOP记录接口访问日志 本文主要讲述AOP在mall项目中的应用,通过在controller层建一个切面来实现接口访问的统一日志记录. AOP AOP为Aspect Or ...

  4. LVS实现(VS/DR)负载均衡和Keepalived高可用

    LVS是Linux Virtual Server的简写即Linux虚拟服务器,是一个虚拟的服务器集群系统一组服务器通过高速的局域网或者地理分布的广域网相互连接,在它们的前端有一个负载调度器(Load ...

  5. CentOS7系统搭建FTP服务器

    创建FTP服务器1.安装FTP服务 yum install -y vsftpd 默认的FTP服务的配置文件路径为/etc/vsftpd cd /etc/vsftpd[root@test924 vsft ...

  6. GoLang设计模式04 - 单例模式

    单例模式恐怕是最为人熟知的一种设计模式了.它同样也是创建型模式的一种.当某个struct只允许有一个实例的时候,我们会用到这种设计模式.这个struct的唯一的实例被称为单例对象.下面是需要创建单例对 ...

  7. FTP协议简介

    1. FTP协议概述 FTP协议的英文全称为File Transfer Protocol, 简称为FTP, 它是从一个主机向一个主机传输文件的协议. FTP协议中客户端和服务器进行文件交互的方式如下图 ...

  8. vivo营销自动化技术解密|开篇

    一.营销自动化概览 1.1. 什么是营销自动化 营销自动化是指专门为营销部门或组织设计的软件平台和技术,可以更有效地在线进行多渠道营销并使重复性任务自动化.营销部门和销售人员通过制定任务和流程的操作标 ...

  9. go中如果想要实现别人写的接口,如何保证确实实现了那个接口而不是错过了什么?

    在类型的实现方法上定义通用代码指令 var _ 要实现的接口  = (receiver类型)(nil) 比如要定义一个web处理程序 type  handler_def struct{} var _ ...

  10. Lua io.lines()

    前言# 从文章的题目可以看出,今天的内容是和文件的行相关的,其实这个函可以看成是一个文件读取函数,只不过文件读取的形式固定了,就是只能一行一行的读,接下来我们就一起来看看这个函数究竟要怎么使用. 内容 ...