ALDS1_5_B-MergeSort.

Description:

Write a program of a Merge Sort algorithm implemented by the following pseudocode. You should also report the number of comparisons in the Merge function.

Merge(A, left, mid, right)

n1 = mid - left;

n2 = right - mid;

create array L[0...n1], R[0...n2]

for i = 0 to n1-1

do L[i] = A[left + i]

for i = 0 to n2-1

do R[i] = A[mid + i]

L[n1] = SENTINEL

R[n2] = SENTINEL

i = 0;

j = 0;

for k = left to right-1

if L[i] <= R[j]

then A[k] = L[i]

i = i + 1

else A[k] = R[j]

j = j + 1

Merge-Sort(A, left, right){

if left+1 < right

then mid = (left + right)/2;

call Merge-Sort(A, left, mid)

call Merge-Sort(A, mid, right)

call Merge(A, left, mid, right)

Input:

In the first line n is given. In the second line, n integers are given.

Output:

In the first line, print the sequence S. Two consequtive elements should be separated by a space character.

In the second line, print the number of comparisons.

Constraints:

n ≤ 500000

0 ≤ an element in S ≤ 109

SampleInput:

10

8 5 9 2 6 3 7 1 10 4

SampleOutput:

1 2 3 4 5 6 7 8 9 10

34

Codes:
//#define LOCAL

#include <cstdio>

#define M 500010
#define SENTINEL 2000000000
int s = 0, A[M], L[M], R[M]; void merge(int l, int m, int r) {
int i, j, k, n1 = m-l, n2 = r-m;
L[n1] = R[n2] = SENTINEL;
for(i=0; i<n1; ++i) L[i] = A[l+i];
for(i=0; i<n2; ++i) R[i] = A[m+i];
i = j = 0;
for(k=l; k<r; ++k) {
if(L[i] <= R[j]) A[k] = L[i++];
else A[k] = R[j++]; ++s;
}
} void mergeSort(int l, int r) {
if(l+1 < r) {
int m = (l+r)/2;
mergeSort(l, m);
mergeSort(m, r);
merge(l, m, r);
}
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]); mergeSort(0, n);
for(i=0; i<n; ++i) {
if(i) printf(" ");
printf("%d", A[i]);
}
printf("\n%d\n", s); return 0;
}

ALDS1_6_B-Partition.

Description:

Quick sort is based on the Divide-and-conquer approach. In QuickSort(A, p, r), first, a procedure Partition(A, p, r) divides an array A[p..r] into two subarrays A[p..q-1] and A[q+1..r] such that each element of A[p..q-1] is less than or equal to A[q], which is, inturn, less than or equal to each element of A[q+1..r]. It also computes the index q.

In the conquer processes, the two subarrays A[p..q-1] and A[q+1..r] are sorted by recursive calls of QuickSort(A, p, q-1) and QuickSort(A, q+1, r).

Your task is to read a sequence A and perform the Partition based on the following pseudocode:

Partition(A, p, r)

1 x = A[r]

2 i = p-1

3 for j = p to r-1

4 do if A[j] <= x

5 then i = i+1

6 exchange A[i] and A[j]

7 exchange A[i+1] and A[r]

8 return i+1

Input:

The first line of the input includes an integer n, the number of elements in the sequence A.

In the second line, n elements of the sequence are given separated by space characters.

Output:

Print the sorted sequence. Two contiguous elements of the sequence should be separated by a space character. The element which is selected as the pivot of the partition should be indicated by [ ].

Constraints:

1 ≤ n ≤ 100,000

SampleInput:

12

13 19 9 5 12 8 7 4 21 2 6 11

SampleOutput:

9 5 8 7 4 2 6 [11] 21 13 19 12

Codes:
//#define LOCAL

#include <cstdio>

#define M 100010
int A[M]; int partition(int p, int r) {
int i = p-1, a = A[r], j, t;
for(j=p; j<r; ++j) {
if(A[j] <= a) {
++i;
t = A[i]; A[i] = A[j]; A[j] = t;
}
}
A[r] = A[i+1]; A[i+1] = a;
return i+1;
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n, q;
scanf("%d", &n);
for(i=0; i<n; ++i) scanf("%d", &A[i]); q = partition(0, n-1);
for(i=0; i<n; ++i) {
if(i) printf(" ");
if(i == q) printf("[%d]", A[i]);
else printf("%d", A[i]);
}
printf("\n"); return 0;
}

ALDS1_6_C-QuickSort.

Description:

Let's arrange a deck of cards. Your task is to sort totally n cards. A card consists of a part of a suit (S, H, C or D) and an number. Write a program which sorts such cards based on the following pseudocode:

Partition(A, p, r)

1 x = A[r]

2 i = p-1

3 for j = p to r-1

4 do if A[j] <= x

5 then i = i+1

6 exchange A[i] and A[j]

7 exchange A[i+1] and A[r]

8 return i+1

Quicksort(A, p, r)

1 if p < r

2 then q = Partition(A, p, r)

3 run Quicksort(A, p, q-1)

4 run Quicksort(A, q+1, r)

Here, A is an array which represents a deck of cards and comparison operations are performed based on the numbers.

Your program should also report the stability of the output for the given input (instance). Here, 'stability of the output' means that: cards with the same value appear in the output in the same order as they do in the input (instance).

Input:

The first line contains an integer n, the number of cards.

n cards are given in the following lines. Each card is given in a line and represented by a pair of a character and an integer separated by a single space.

Output:

In the first line, print the stability ("Stable" or "Not stable") of this output.

In the following lines, print the arranged cards in the same manner of that of the input.

Constraints:

1 ≤ n ≤ 100,000

1 ≤ the number of a card ≤ 109

There are no identical card in the input

SampleInput1:

6

D 3

H 2

D 1

S 3

D 2

C 1

SampleOutput1:

Not stable

D 1

C 1

D 2

H 2

D 3

S 3

SampleInput2:

2

S 1

H 1

SampleOutput2:

Stable

S 1

H 1

Codes:
//#define LOCAL

#include <cstdio>

#define M 100010
#define S 2000000000
struct Card {
char p;
int q;
};
Card A[M], B[M], L[M], R[M]; void merge(int l, int m, int r) {
int i, j, k, n1 = m-l, n2 = r-m;
for(i=0; i<n1; ++i) L[i] = A[l+i];
for(i=0; i<n2; ++i) R[i] = A[m+i];
i = j = 0, L[n1].q = R[n2].q = S;
for(k=l; k<r; ++k) {
if(L[i].q <= R[j].q) A[k] = L[i++];
else A[k] = R[j++];
}
} void mergeSort(int l, int r) {
if(l+1 < r) {
int m = (l+r)/2;
mergeSort(l, m);
mergeSort(m, r);
merge(l, m, r);
}
} int partition(int l, int r) {
int i = l-1, j, x = B[r].q;
for(j=l; j<r; ++j) {
if(B[j].q <= x) {
++i;
Card t = B[j]; B[j] = B[i]; B[i] = t;
}
}
Card t = B[r]; B[r] = B[i+1]; B[i+1] = t;
return i+1;
} void quickSort(int l, int r) {
int m;
if(l < r) {
m = partition(l, r);
quickSort(l, m-1);
quickSort(m+1, r);
}
} int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, m, n;
char t[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s%d", t, &m);
A[i].p = B[i].p = t[0];
A[i].q = B[i].q = m;
} mergeSort(0, n);
quickSort(0, n-1);
for(i=0; i<n; ++i) {
if(A[i].p != B[i].p) {
printf("Not stable\n");
break;
}
}
if(i == n) printf("Stable\n");
for(i=0; i<n; ++i) {
printf("%c %d\n", B[i].p, B[i].q);
} return 0;
}

ALDS1_6_A-CountingSort.

Description:

Counting sort can be used for sorting elements in an array which each of the n input elements is an integer in the range 0 to k. The idea of counting sort is to determine, for each input element x, the number of elements less than x as C[x]. This information can be used to place element x directly into its position in the output array B. This scheme must be modified to handle the situation in which several elements have the same value. Please see the following pseudocode for the detail:

Counting-Sort(A, B, k)

1 for i = 0 to k

2 do C[i] = 0

3 for j = 1 to length[A]

4 do C[A[j]] = C[A[j]]+1

5 /* C[i] now contains the number of elements equal to i /

6 for i = 1 to k

7 do C[i] = C[i] + C[i-1]

8 /
C[i] now contains the number of elements less than or equal to i */

9 for j = length[A] downto 1

10 do B[C[A[j]]] = A[j]

11 C[A[j]] = C[A[j]]-1

Write a program which sorts elements of given array ascending order based on the counting sort.

Input:

The first line of the input includes an integer n, the number of elements in the sequence.

In the second line, n elements of the sequence are given separated by spaces characters.

Output:

Print the sorted sequence. Two contiguous elements of the sequence should be separated by a space character.

Constraints:

1 ≤ n ≤ 2,000,000

0 ≤ A[i] ≤ 10,000

SampleInput:

7

2 5 1 3 2 3 0

SampleOutput:

0 1 2 2 3 3 5

Codes:
//#define LOCAL

#include <cstdio>

#define M 10010
#define VM 2000010
int A[VM], B[M], C[VM]; int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif int i, n;
scanf("%d", &n);
for(i=1; i<=n; ++i) {
scanf("%d", &A[i]);
++B[A[i]];
} for(i=1; i<M; ++i) B[i] += B[i-1];
for(i=n; i>=1; --i) C[B[A[i]]--] = A[i];
for(i=1; i<=n; ++i) {
if(i > 1) printf(" ");
printf("%d", C[i]);
}
printf("\n"); return 0;
}

ALDS1_5_D-TheNumberOfInversions.

Codes:
#include <iostream>
using namespace std; #define MAX 200000
#define SENTINEL 2000000000
typedef long long llong;
int L[MAX/2+2], R[MAX/2+2]; llong merge(int A[], int n, int left, int mid, int right) {
llong cnt = 0;
int i, j, k, n1 = mid-left, n2 = right-mid;
for(i=0; i<n1; ++i) L[i] = A[left+i];
for(i=0; i<n2; ++i) R[i] = A[mid+i];
i = j = 0, L[n1] = R[n2] = SENTINEL;
for(k=left; k<right; ++k) {
if(L[i] <= R[j]) A[k] = L[i++];
else A[k] = R[j++];
cnt += n1-i;
}
return cnt;
} llong mergeSort(int A[], int n, int left, int right) {
int mid;
llong v1, v2, v3;
if(left+1 < right) {
mid = (left+right)/2;
v1 = mergeSort(A, n, left, mid);
v2 = mergeSort(A, n, mid, right);
v3 = merge(A, n, left, mid, right);
return v1+v2+v3;
} else return 0;
} int main()
{
int n, i, A[MAX];
cin >> n;
for(i=0; i<n; ++i) cin >> A[i]; int ans = mergeSort(A, n, 0, n);
cout << ans << endl; return 0;
}

ALDS1_6_D-MinimumCostSort.

Codes:
#include <iostream>
#include <algorithm>
using namespace std; static const int MAX = 1000;
static const int VMAX = 10000;
int n, s, A[MAX], B[MAX], T[VMAX+1]; int solve() {
int i, ans = 0;
bool V[MAX];
for(i=0; i<n; ++i) {B[i] = A[i]; V[i] = false;}
sort(B, B+n);
for(i=0; i<n; ++i) T[B[i]] = i;
for(i=0; i<n; ++i) {
if(V[i]) continue;
int S = 0, an = 0, cur = i, m = VMAX;
while(1) {
V[cur] = true; ++an;
int v = A[cur]; m = min(m, v);
S += v; cur = T[v];
if(V[cur]) break;
}
ans += min(S+(an-2)*m, m+S+(an+1)*s);
}
return ans;
} int main()
{
cin >> n;
s = VMAX;
for(int i=0; i<n; ++i) {
cin >> A[i];
s = min(s, A[i]);
}
int ans = solve();
cout << ans << endl; return 0;
}

AOJ/高等排序习题集的更多相关文章

  1. AOJ/初等排序习题集

    ALDS1_1_D-MaximumProfit. Codes: //#define LOCAL #include <cstdio> #include <algorithm> u ...

  2. 贪心+拓扑排序 AOJ 2456 Usoperanto

    题目传送门 题意:给出一条链,比如x连到y,x一定要在y的左边,且代价是这条链经过的点的权值和,问如何排序使得代价最小 分析:类似拓扑排序,先把入度为0的点入队,把指向该点的所有点按照权值排序,保证这 ...

  3. AOJ/数据结构习题集

    ALDS1_3_A-Stack. Description: Write a program which reads an expression in the Reverse Polish notati ...

  4. AOJ/搜索递归分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  5. AOJ/树二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  6. AOJ/堆与动态规划习题集

    ALDS1_9_A-CompleteBinaryTree. Codes: //#define LOCAL #include <cstdio> int parent(int i) { ret ...

  7. AOJ/树与二叉搜索树习题集

    ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...

  8. AOJ/搜索与递归及分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  9. 数据结构与算法之PHP排序算法(归并排序)

    一.基本思想 归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,使每个子序列有序,再将已有序的子序列合并,得到完全有序的序列.该算法是采用分治法(Divid ...

随机推荐

  1. java 将字符串拆分成块装数组

    split 将字符串拆分 regex=???,根据???以其为界进行拆分. public String[] split(String regex) 根据给定正则表达式的匹配拆分此字符串. 该方法的作用 ...

  2. jQuery中的基本过滤选择器(四、三)::first、:last、:not() ... ...

    <!DOCTYPE html> <html> <head> <title>基本过滤选择器</title> <meta http-equ ...

  3. Java 大数加法HdAcm1002

    1 import java.util.Scanner; 2 3 4 public class Main { 5 public static void main(String[] args) { 6 S ...

  4. react的每个方法为什么一定要bind this

    一开始学习react的时候就了解了react的每个方法都要bind(this)或者使用箭头函数绑定this的指向,到底是为什么要这么写呢,当时要学习的东西太多了就没在意,今天特别好奇(不搞懂不吃饭的态 ...

  5. vue中的v-cloak指令

    v-cloak不需要表达式,它会在vue实例结束编译时从绑定的html元素上移除,经常和display:none;配合使用: <div id="app" v-cloak> ...

  6. MyBatis-Plus 代码生成器模板

    MyBatis-Plus 代码生成器模板 maven 依赖 <!--Mysql--> <dependency> <groupId>mysql</groupId ...

  7. Java基础(三)——内部类

    一.内部类 内部类(Inner Class)就是定义在一个类里面的类.与之对应,包含内部类的类被称为外部类.内部类可以用private修饰. 1.为什么要定义内部类?或者内部类的作用是什么? 内部类提 ...

  8. Linux(一)——简介

    aaa https://www.cnblogs.com/three-fighter/p/14644152.html#navigator

  9. 未能找到源类型“DbSet<T>”的查询模式的实现。未找到“Select”

    使用EF6.0的模型优先模式进行开发,遇到了报错,如下图 后来发现是没引用using System.Linq; 引用后就不报错了

  10. Appium自动化(5) - 如何获取android app 的Activity 和 Package

    如果你还想从头学起Appium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1693896.html 前言 在Desired Capab ...