转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题目:给出n个数,选出三个数,按下标顺序形成等差数列

http://www.codechef.com/problems/COUNTARI

如果只是形成 等差数列并不难,大概就是先求一次卷积,然后再O(n)枚举,判断2 * a[i]的种数,不过按照下标就不会了。

有种很矬的,大概就是O(n)枚举中间的数,然后 对两边分别卷积,O(n * n * lgn)。

如果能想到枚举中间的数的话,应该可以进一步想到分块处理。

如果分为K块

那么分为几种情况 :

三个数都是在当前块中,那么可以枚举后两个数,查找第一个数,复杂度O(N/K * N/K)

两个数在当前块中,那么另外一个数可能在前面,也可能在后面,同理还是枚举两个数,查找,复杂度
O(N/K * N/K)

如果只有一个数在当前块中,那么就要对两边的数进行卷积,然后枚举当前块中的数,查询2 × a[i]。复杂度O(N * lg N)

那么总体就是O(k * (N/K * N/K + N * lg N))。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
//FFT copy from kuangbin
const double pi = acos (-1.0);
// Complex z = a + b * i
struct Complex {
double a, b;
Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}
Complex operator + (const Complex &c) const {
return Complex(a + c.a , b + c.b);
}
Complex operator - (const Complex &c) const {
return Complex(a - c.a , b - c.b);
}
Complex operator * (const Complex &c) const {
return Complex(a * c.a - b * c.b , a * c.b + b * c.a);
}
};
//len = 2 ^ k
void change (Complex y[] , int len) {
for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {
if (i < j) swap(y[i] , y[j]);
int k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
// FFT
// len = 2 ^ k
// on = 1 DFT on = -1 IDFT
void FFT (Complex y[], int len , int on) {
change (y , len);
for (int h = 2 ; h <= len ; h <<= 1) {
Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));
for (int j = 0 ; j < len ; j += h) {
Complex w(1 , 0);
for (int k = j ; k < j + h / 2 ; k ++) {
Complex u = y[k];
Complex t = w * y [k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0 ; i < len ; i ++) {
y[i].a /= len;
}
}
}
const int N = 100005;
typedef long long LL;
int n , a[N];
int block , size;
LL num[N << 2];
int min_num = 30000 , max_num = 1;
int before[N] = {0}, behind[N] = {0} , in[N] = {0};
Complex x1[N << 2] ,x2[N << 2];
int main () {
#ifndef ONLINE_JUDGE
freopen("input.txt" , "r" , stdin);
#endif
scanf ("%d", &n);
for (int i = 0 ; i < n ; ++ i) {
scanf ("%d", &a[i]);
behind[a[i]] ++;
min_num = min (min_num , a[i]);
max_num = max (max_num , a[i]);
}
LL ret = 0;
block = min(n , 35);
size = (n + block - 1) / block;
for (int t = 0 ; t < block ; t ++) {
int s = t * size , e = (t + 1) * size;
if (e > n) e = n;
for (int i = s ; i < e ; i ++) {
behind[a[i]] --;
}
for (int i = s ; i < e ; i ++) {
for (int j = i + 1 ; j < e ; j ++) {
int m = 2 * a[i] - a[j];
if(m >= 1 && m <= 30000) {
// both of three in the block
ret += in[m];
// one of the number in the pre block
ret += before[m];
}
m = 2 * a[j] - a[i];
if (m >= 1 && m <= 30000) {
// one of the number in the next block
ret += behind[m];
}
}
in[a[i]] ++;
}
// pre block , current block , next block
if (t > 0 && t < block - 1) {
int l = 1;
int len = max_num + 1;
while (l < len * 2) l <<= 1;
for (int i = 0 ; i < len ; i ++) {
x1[i] = Complex (before[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x1[i] = Complex (0 , 0);
}
for (int i = 0 ; i < len ; i ++) {
x2[i] = Complex (behind[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x2[i] = Complex (0 , 0);
}
FFT (x1 , l , 1);
FFT (x2 , l , 1);
for (int i = 0 ; i < l ; i ++) {
x1[i] = x1[i] * x2[i];
}
FFT (x1 , l , -1);
for (int i = 0 ; i < l ; i ++) {
num[i] = (LL)(x1[i].a + 0.5);
}
for (int i = s ; i < e ; i ++) {
ret += num[a[i] << 1];
}
}
for (int i = s ; i < e ; i ++) {
in[a[i]] --;
before[a[i]] ++;
}
}
printf("%lld\n", ret);
return 0;
}

CC Arithmetic Progressions (FFT + 分块处理)的更多相关文章

  1. CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)

    题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...

  2. CodeChef - COUNTARI Arithmetic Progressions (FFT)

    题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...

  3. CodeChef Arithmetic Progressions

    https://www.codechef.com/status/COUNTARI 题意: 给出n个数,求满足i<j<k且a[j]-a[i]==a[j]-a[k] 的三元组(i,j,k)的个 ...

  4. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  5. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

  7. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  9. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

随机推荐

  1. 转:开源项目学习方法ABC

    文章来自于 http://yizhaolingyan.net/?p=123#comment-207 学习各种开源项目,已经成为很多朋友不可回避的工作内容了.笔者本人也是如此.在接触并学习了若干个开源项 ...

  2. SANS top 20

    What Are the Controls?The detailed Consensus Audit Guidelines are posted at http://www.sans.org/cag/ ...

  3. mysql 主从 配置和同步管理

    首先呢,需要有两个mysql服务器.如果做测试的话可以在同一台机器上装两个mysql服务程序,注意要两个运行程序的端口不能一样.我用的是一个是默认的3306,从服务器用的是3307端口. 在主服务创建 ...

  4. at命令

    在windows系统中,windows提供了计划任务这一功能,在控制面板 -> 性能与维护 -> 任务计划, 它的功能就是安排自动运行的任务. 通过'添加任务计划'的一步步引导,则可建立一 ...

  5. SQL Standard Based Hive Authorization(基于SQL标准的Hive授权)

    说明:该文档翻译/整理于Hive官方文档https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authori ...

  6. 2014-08-29 Last Day

    今天实在吾索实习的第38天,也是这个暑假在吾索实习的最后一天. 这天里,并有做过多的新知识的学习,而是对先前的BBS系统进行优化,从外观的优化到每一行每一句代码的优化,希望能系统有更高的效率.虽说,暑 ...

  7. 创建一个Android工程

    Creating an Android Project 原文演示了怎么通过Android Studio和命令行两种方式来创建一个Android工程. 原文链接:http://developer.and ...

  8. Tomcat启动时报错:java.net.BindException: Permission denied <null>:80 【转载】

    本文转载自: http://blog.sina.com.cn/s/blog_4550f3ca0101g37l.html   问题起因:做负载均衡时需要将Web工程与Wap工程同时部署在一台Suse服务 ...

  9. J.Hilburn:高档男装市场颠覆者_网易财经

    J.Hilburn:高档男装市场颠覆者_网易财经 J.Hilburn:高档男装市场颠覆者

  10. Repo安装遇到问题

    问题一: “The program 'repo' is currently not installed. You can install it by typing: sudo apt-get inst ...