转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

题目:给出n个数,选出三个数,按下标顺序形成等差数列

http://www.codechef.com/problems/COUNTARI

如果只是形成 等差数列并不难,大概就是先求一次卷积,然后再O(n)枚举,判断2 * a[i]的种数,不过按照下标就不会了。

有种很矬的,大概就是O(n)枚举中间的数,然后 对两边分别卷积,O(n * n * lgn)。

如果能想到枚举中间的数的话,应该可以进一步想到分块处理。

如果分为K块

那么分为几种情况 :

三个数都是在当前块中,那么可以枚举后两个数,查找第一个数,复杂度O(N/K * N/K)

两个数在当前块中,那么另外一个数可能在前面,也可能在后面,同理还是枚举两个数,查找,复杂度
O(N/K * N/K)

如果只有一个数在当前块中,那么就要对两边的数进行卷积,然后枚举当前块中的数,查询2 × a[i]。复杂度O(N * lg N)

那么总体就是O(k * (N/K * N/K + N * lg N))。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
//FFT copy from kuangbin
const double pi = acos (-1.0);
// Complex z = a + b * i
struct Complex {
double a, b;
Complex(double _a=0.0,double _b=0.0):a(_a),b(_b){}
Complex operator + (const Complex &c) const {
return Complex(a + c.a , b + c.b);
}
Complex operator - (const Complex &c) const {
return Complex(a - c.a , b - c.b);
}
Complex operator * (const Complex &c) const {
return Complex(a * c.a - b * c.b , a * c.b + b * c.a);
}
};
//len = 2 ^ k
void change (Complex y[] , int len) {
for (int i = 1 , j = len / 2 ; i < len -1 ; i ++) {
if (i < j) swap(y[i] , y[j]);
int k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if(j < k) j += k;
}
}
// FFT
// len = 2 ^ k
// on = 1 DFT on = -1 IDFT
void FFT (Complex y[], int len , int on) {
change (y , len);
for (int h = 2 ; h <= len ; h <<= 1) {
Complex wn(cos (-on * 2 * pi / h), sin (-on * 2 * pi / h));
for (int j = 0 ; j < len ; j += h) {
Complex w(1 , 0);
for (int k = j ; k < j + h / 2 ; k ++) {
Complex u = y[k];
Complex t = w * y [k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0 ; i < len ; i ++) {
y[i].a /= len;
}
}
}
const int N = 100005;
typedef long long LL;
int n , a[N];
int block , size;
LL num[N << 2];
int min_num = 30000 , max_num = 1;
int before[N] = {0}, behind[N] = {0} , in[N] = {0};
Complex x1[N << 2] ,x2[N << 2];
int main () {
#ifndef ONLINE_JUDGE
freopen("input.txt" , "r" , stdin);
#endif
scanf ("%d", &n);
for (int i = 0 ; i < n ; ++ i) {
scanf ("%d", &a[i]);
behind[a[i]] ++;
min_num = min (min_num , a[i]);
max_num = max (max_num , a[i]);
}
LL ret = 0;
block = min(n , 35);
size = (n + block - 1) / block;
for (int t = 0 ; t < block ; t ++) {
int s = t * size , e = (t + 1) * size;
if (e > n) e = n;
for (int i = s ; i < e ; i ++) {
behind[a[i]] --;
}
for (int i = s ; i < e ; i ++) {
for (int j = i + 1 ; j < e ; j ++) {
int m = 2 * a[i] - a[j];
if(m >= 1 && m <= 30000) {
// both of three in the block
ret += in[m];
// one of the number in the pre block
ret += before[m];
}
m = 2 * a[j] - a[i];
if (m >= 1 && m <= 30000) {
// one of the number in the next block
ret += behind[m];
}
}
in[a[i]] ++;
}
// pre block , current block , next block
if (t > 0 && t < block - 1) {
int l = 1;
int len = max_num + 1;
while (l < len * 2) l <<= 1;
for (int i = 0 ; i < len ; i ++) {
x1[i] = Complex (before[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x1[i] = Complex (0 , 0);
}
for (int i = 0 ; i < len ; i ++) {
x2[i] = Complex (behind[i] , 0);
}
for (int i = len ; i < l ; i ++) {
x2[i] = Complex (0 , 0);
}
FFT (x1 , l , 1);
FFT (x2 , l , 1);
for (int i = 0 ; i < l ; i ++) {
x1[i] = x1[i] * x2[i];
}
FFT (x1 , l , -1);
for (int i = 0 ; i < l ; i ++) {
num[i] = (LL)(x1[i].a + 0.5);
}
for (int i = s ; i < e ; i ++) {
ret += num[a[i] << 1];
}
}
for (int i = s ; i < e ; i ++) {
in[a[i]] --;
before[a[i]] ++;
}
}
printf("%lld\n", ret);
return 0;
}

CC Arithmetic Progressions (FFT + 分块处理)的更多相关文章

  1. CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)

    题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...

  2. CodeChef - COUNTARI Arithmetic Progressions (FFT)

    题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列. https://www.cnblogs.com/xiuwen ...

  3. CodeChef Arithmetic Progressions

    https://www.codechef.com/status/COUNTARI 题意: 给出n个数,求满足i<j<k且a[j]-a[i]==a[j]-a[k] 的三元组(i,j,k)的个 ...

  4. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  5. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

  7. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  9. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

随机推荐

  1. zend framework 1 连接oracle数据库的写法

    1 用Zend_Db_Adapter_Pdo_Oci方式 $config =array( 'host'=>'192.168.5.40', 'port'=>'1521', 'dbname'= ...

  2. Keil_uvision_4基本使用教程

    Keil C51 V9.00 即09年发布的最新版本uVision 4,版本外观改变比较大,可以使用以前的注册文件.如果全新安装,在VISTA或者WIN 7系统下,请使用管理员方式运行,然后注册即可无 ...

  3. WPF利用动画实现圆形进度条

    原文:WPF利用动画实现圆形进度条 这是我的第一篇随笔,最近因为工作需要,开始学习WPF相关技术,自己想实现以下圆形进度条的效果,逛了园子发现基本都是很久以前的文章,实现方式一般都是GDI实现的,想到 ...

  4. 开源src镜像

    开源src镜像: http://download.savannah.gnu.org/releases/

  5. HDU4666 Hyperspace(曼哈顿)

    题目链接. 分析: 这是多校的一个题,当时没做出来.学长说让用multiset. 用multiset将每一个数的1<<dim个状态全部保存.假设状态 i, 最远曼哈顿距离应当是 max[i ...

  6. BZOJ1715: [Usaco2006 Dec]Wormholes 虫洞

    1715: [Usaco2006 Dec]Wormholes 虫洞 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 475  Solved: 263[Sub ...

  7. HDOJ(HDU) 1994 利息计算(简单题目)

    Problem Description 为自行解决学费,chx勤工俭学收入10000元以1年定期存入银行,年利率为3.7% .利率 按年计算,表示100元存1年的利息为3.7元.实际上有时提前有时推迟 ...

  8. 2013=12=2 bitree

    #include "stdio.h" #include "stdlib.h" #define OVERFLOW -1 #define ERROR -1 #def ...

  9. C++类型转换[转]

    转自 http://www.cnblogs.com/goodhacker/archive/2011/07/20/2111996.html C风格的强制类型转换(Type Cast)很简单,不管什么类型 ...

  10. HDOJ 2102

    如果传送门'#'的另一层是传送门'#'或者是墙'*',就可以理解为这两层的这个位置都是'*'了 还有就是传送门'#'传过去可以是空地'.' 也可以是目的地'P',不要忽略了 #include < ...