Pipe
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9932   Accepted: 3045

Description

The GX Light Pipeline Company started to prepare bent pipes for the new transgalactic light pipeline. During the design phase of the new pipe shape the company ran into the problem of determining how far the light can reach inside each component of the pipe. Note that the material which the pipe is made from is not transparent and not light reflecting.


Each pipe component consists of many straight pipes connected
tightly together. For the programming purposes, the company developed
the description of each component as a sequence of points [x1; y1], [x2;
y2], . . ., [xn; yn], where x1 < x2 < . . . xn . These are the
upper points of the pipe contour. The bottom points of the pipe contour
consist of points with y-coordinate decreased by 1. To each upper point
[xi; yi] there is a corresponding bottom point [xi; (yi)-1] (see picture
above). The company wants to find, for each pipe component, the point
with maximal x-coordinate that the light will reach. The light is
emitted by a segment source with endpoints [x1; (y1)-1] and [x1; y1]
(endpoints are emitting light too). Assume that the light is not bent at
the pipe bent points and the bent points do not stop the light beam.

Input

The
input file contains several blocks each describing one pipe component.
Each block starts with the number of bent points 2 <= n <= 20 on
separate line. Each of the next n lines contains a pair of real values
xi, yi separated by space. The last block is denoted with n = 0.

Output

The
output file contains lines corresponding to blocks in input file. To
each block in the input file there is one line in the output file. Each
such line contains either a real value, written with precision of two
decimal places, or the message Through all the pipe.. The real value is
the desired maximal x-coordinate of the point where the light can reach
from the source for corresponding pipe component. If this value equals
to xn, then the message Through all the pipe. will appear in the output
file.

Sample Input

4
0 1
2 2
4 1
6 4
6
0 1
2 -0.6
5 -4.45
7 -5.57
12 -10.8
17 -16.55
0

Sample Output

4.67
Through all the pipe.

Source

【思路】

线段直线相交。

如果一条直线没有经过两个拐点一定不是最优的直线,可以通过旋转移动使之更优。

枚举上线顶点,判断相交,求出交点。

【代码】

 #include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N = ;
const double eps = 1e-; struct Pt{
double x, y;
}a[N], b[N];
struct Line{ double a, b, c; };
int n;
double ans; double mult(Pt sp, Pt ep, Pt op){
return (sp.x-op.x)*(ep.y-op.y) - (ep.x-op.x)*(sp.y-op.y);
}
Line getLine(Pt p1, Pt p2){
Line ans;
ans.a = p1.y - p2.y;
ans.b = p2.x - p1.x;
ans.c = p1.x*p2.y - p2.x*p1.y;
return ans;
} bool solve(Pt p1, Pt p2, int e){
int i, flag;
for(i = ; i < n-; i ++) {
if(mult(p2, a[i], p1) < -eps || mult(p2, a[i+], p1) < -eps){
flag = ; break;
}
if(mult(p2, b[i], p1) > eps || mult(p2, b[i+], p1) > eps){
flag = ; break;
}
}
if(i == n-) return true; // 没有与任何的管道相交,Through all the pipe.
if(i < e) return false; // 光线不合法。
Line l1, l2; // 光线合法,求出射到的最远距离。
l1 = getLine(p1, p2);
if(flag == ) l2 = getLine(a[i], a[i+]);
else l2 = getLine(b[i], b[i+]);
ans = max(ans, (l1.b*l2.c-l2.b*l1.c)/(l1.a*l2.b-l2.a*l1.b));
return false;
} int main(){
int i, j;
while(scanf("%d", &n) && n){
for(i = ; i < n; i ++){
scanf("%lf%lf", &a[i].x, &a[i].y);
b[i].x = a[i].x;
b[i].y = a[i].y - ;
}
ans = -1e9;
bool flag = ;
if(n < ) flag = ;
for(i = ; i < n; i ++) {
for(j = i + ; j < n; j ++){
flag = solve(a[i], b[j], j);
if(flag) break;
flag = solve(b[i], a[j], j);
if(flag) break;
}
if(flag) break;
}
if(flag) puts("Through all the pipe.");
else printf("%.2lf\n", ans);
}
return ;
}

poj 1039 Pipe(几何基础)的更多相关文章

  1. poj 1039 Pipe (Geometry)

    1039 -- Pipe 理解错题意一个晚上._(:з」∠)_ 题意很容易看懂,就是要求你求出从外面射进一根管子的射线,最远可以射到哪里. 正解的做法是,选择上点和下点各一个,然后对于每个折点位置竖直 ...

  2. poj 1039 Pipe(叉乘。。。)

    题目:http://poj.org/problem?id=1039 题意:有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从 ...

  3. POJ - 1039 Pipe(计算几何)

    http://poj.org/problem?id=1039 题意 有一宽度为1的折线管道,上面顶点为(xi,yi),所对应的下面顶点为(xi,yi-1),假设管道都是不透明的,不反射的,光线从左边入 ...

  4. POJ 1039 Pipe【经典线段与直线相交】

    链接: http://poj.org/problem?id=1039 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. 简单几何(直线与线段相交) POJ 1039 Pipe

    题目传送门 题意:一根管道,有光源从入口发射,问光源最远到达的地方. 分析:黑书上的例题,解法是枚举任意的一个上顶点和一个下顶点(优化后),组成直线,如果直线与所有竖直线段有交点,则表示能穿过管道. ...

  6. POJ 1039 Pipe(直线和线段相交判断,求交点)

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8280   Accepted: 2483 Description ...

  7. POJ 1039 Pipe

    题意:一根管子,中间有一些拐点,给出拐点的上坐标,下坐标为上坐标的纵坐标减1,管子不能透过光线也不能折射光线,问光线能射到最远的点的横坐标. 解法:光线射到最远处的时候一定最少经过两个拐点,枚举每两个 ...

  8. POJ 1039 Pipe 枚举线段相交

    Pipe Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9493   Accepted: 2877 Description ...

  9. POJ 1039 Pipe | 线段相交

    题目: 给一个管子,有很多转弯处,问从管口的射线射进去最长能射到多远 题解: 根据黑书,可以证明的是这条光线一定经过了一个上顶点和下顶点 所以我们枚举每对上下顶点就可以了 #include<cs ...

随机推荐

  1. js json和对象互相转换

    http://www.jb51.net/article/44562.htm obj = JSON.parse(string) | obj = jQuery.parseJSON(str) 将JSON字符 ...

  2. python之PIL安装问题

    ··在windows安装模块 总是出现问题,今天安装PIL的 首先提示我的是pip命令出错,这应该是当你安装Python2.7的时候 并没有把pip模块添加进去 导致出现了这样的一个问题,为了省事,我 ...

  3. css(html)背景图优化合并

    图片本身的优化: 图像质量要求和图像文件大小决定你用什么格式的图片,用较小的图片文件呈现较好的图像质量. 当图片色彩过于丰富且无透明要求时,建议采用jpg格式并保存为较高质量. 当图片色彩过于丰富又有 ...

  4. 网络编程TCP/IP实现客户端与客户端聊天

    一.TCP/IP协议 既然是网络编程,涉及几个系统之间的交互,那么首先要考虑的是如何准确的定位到网络上的一台或几台主机,另一个是如何进行可靠高效的数据传输.这里就要使用到TCP/IP协议. TCP/I ...

  5. [刷机教程] 三星Note8 N5100不卡屏的唯一解决办法--落雨刷机教程

    首先我自己写了一个word,在附件里.大概23页,图文并茂.附带三星NOTE8 N5100 MD2下载包 刷机要谨慎啊,小伙伴们. 刷机教程已经上传到我本人的网站:点击进入去看吧.和word一样. h ...

  6. Ecmall系统自带的分页功能

    在Ecmall的二次开发中,分页是必不可少的.这个系统已经自带了分页功能,下面来看看如何使用这个分页. 下面是一个自定义的类,用于查看订单的详细情况.关键在于get_order_data()这个方法, ...

  7. 【UVA 10369】 Arctic Network (最小生成树)

    [题意] 南极有n个科研站, 要把这些站用卫星或者无线电连接起来,使得任意两个都能直接或者间接相连.任意两个都有安装卫星设备的,都可以直接通过卫星通信,不管它们距离有多远. 而安装有无线电设备的两个站 ...

  8. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  9. CF_225B _Well-known Numbers

    Numbers k-bonacci (k is integer, k > 1) are a generalization of Fibonacci numbers and are determi ...

  10. OA学习笔记-010-Struts部分源码分析、Intercepter、ModelDriver、OGNL、EL

    一.分析 二. 1.OGNL 在访问action前,要经过各种intercepter,其中ParameterFilterInterceptor会把各咱参数放到ValueStack里,从而使OGNL可以 ...