Palindrome Permutation I

Given a string, determine if a permutation of the string could form a palindrome.

For example,
"code" -> False, "aab" -> True, "carerac" -> True.

Hint:

  1. Consider the palindromes of odd vs even length. What difference do you notice?
  2. Count the frequency of each character.
  3. If each character occurs even number of times, then it must be a palindrome. How about character which occurs odd number of times

分析:

  这个问题不需要判断是否是回文字符串,而是判断是否能组成回文字符串,换句话说就是字母在原字符串中的顺序无关。

解法:

  可根据回文定义得出,即允许出现奇数次的字母种数最多为1

证明:

  充分性,将出现奇数次的字母放在中间,若无出现奇数次的字母,则直接做下一步,然后从中间向两边依次放置出现偶数次的字母,满足;

  必要性,任意回文字符串都满足中轴对称,偶数个字母则有出现奇数次的字母种数为0,奇数个字母则有出现奇数次的字母种数为1,满足;

代码:

bool isPermutation(string str){
vector<char> bin( ,);
for(char c : str)
bin[int(c - 'a')] ^= ;
int count = ;
for(int i : bin)
count += i;
return count <= ;
}

Palindrome Permutation II

Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form.

For example:

Given s = "aabb", return ["abba", "baab"].

Given s = "abc", return [].

Hint:

  1. If a palindromic permutation exists, we just need to generate the first half of the string.
  2. To generate all distinct permutations of a (half of) string, use a similar approach fromPermutations II or Next Permutation.

分析:

  这个问题相比上个问题,是个后续输出工作,直接排列所有情况即可,证明比较直观。

解法:

  直接排列。小技巧同Hint. 1给出的,只需要得出一边的排列。

代码:

void dfs(unordered_set<string> &uset, string str, vector<int> bin, int total) {
if(total == ) {
uset.insert(str);
return;
}
for(int i = ; i < bin.size(); i++) {
if(bin[i] == )
continue;
bin[i]--;
dfs(uset, str + char(i + 'a'), bin, total - );
bin[i]++;
}
return;
}
vector<string> permutation(string str){
vector<int> bin( ,);
for(char c : str)
bin[int(c - 'a')]++;
int count = , total = ;
char record;
for(int i = ; i < bin.size(); i++) {
total += bin[i];
if((bin[i] & ) == ) {
record = char(i + 'a');
count++;
}
}
vector<string> vs;
if(count > )
return vs;
for(int &i : bin)
i /= ;
unordered_set<string> uset;
dfs(uset, "", bin, total / );
for(string s : uset) {
string str = s;
if(count == )
str += record;
reverse(s.begin(), s.end());
str += s;
vs.push_back(str);
}
return vs;
}

[Locked] Palindrome Permutation I & II的更多相关文章

  1. [LeetCode] Palindrome Permutation I & II

    Palindrome Permutation Given a string, determine if a permutation of the string could form a palindr ...

  2. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  3. leetcode 266.Palindrome Permutation 、267.Palindrome Permutation II

    266.Palindrome Permutation https://www.cnblogs.com/grandyang/p/5223238.html 判断一个字符串的全排列能否形成一个回文串. 能组 ...

  4. [LeetCode] 267. Palindrome Permutation II 回文全排列 II

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. LeetCode Palindrome Permutation II

    原题链接在这里:https://leetcode.com/problems/palindrome-permutation-ii/ 题目: Given a string s, return all th ...

  6. [LeetCode#267] Palindrome Permutation II

    Problem: Given a string s, return all the palindromic permutations (without duplicates) of it. Retur ...

  7. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  8. LeetCode Palindrome Permutation

    原题链接在这里:https://leetcode.com/problems/palindrome-permutation/ 题目: Given a string, determine if a per ...

  9. [LeetCode] 266. Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. Example 1: Input: ...

随机推荐

  1. startActivityForResult和setResult详解

    http://www.cnblogs.com/lijunamneg/archive/2013/02/05/2892616.html startActivityForResult与startActivi ...

  2. windows 20003 扩展安装后不成功的原因

    windows扩展如果安装不成功(PHP扩展)很大的可能就是那个DLL的权限不够.需要分配:AdministratorAuthenticater UsersIIS_WPGSYSTEMUsers

  3. 用java写bp神经网络(四)

    接上篇. 在(一)和(二)中,程序的体系是Net,Propagation,Trainer,Learner,DataProvider.这篇重构这个体系. Net 首先是Net,在上篇重新定义了激活函数和 ...

  4. xcode7 icon图标设置

  5. js实现滑动解锁功能(PC+Moblie)

    http://dummyimage.com/600x400/ http://placehold.it/140x70 实现效果: css样式代码略. html代码: 页面上导入了jquery.mobil ...

  6. 『重构--改善既有代码的设计』读书笔记----Substitute Algorithm

    重构可以把复杂的东西分解成一个个简单的小块.但有时候,你必须壮士断腕删掉整个算法,用简单的算法来取代,如果你发现做一件事情可以有更清晰的方式,那你完全有理由用更清晰的方式来解决问题.如果你开始使用程序 ...

  7. Transpose File

    Given a text file file.txt, transpose its content. You may assume that each row has the same number ...

  8. Java学习----方法的覆盖

    方法的覆盖:子类继承父类,子类重写父类的同名方法. 覆盖的原则: 1. 方法的参数必须跟父类保持一致 2. 子类方法的修饰符的范围必须大于等于父类方法同名的修饰符(public > privat ...

  9. python split()黑魔法

    split()用法: #!/usr/bin/python str = "Line1-abcdef \nLine2-abc \nLine4-abcd"; print str.spli ...

  10. Node 之 Express 学习笔记 第二篇 Express 4x 骨架详解

    周末,没事就来公司加班继续研究一下Express ,这也许也是单身狗的生活吧. 1.目录结构: bin, 存放启动项目的脚本文件 node_modules, 项目所有依赖的库,以及存放 package ...