分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演

但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时

然后进行分块优化,时间复杂度是O(n*sqrt(n))

#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
typedef long long LL;
const int N=5e4+;
const int INF=0x3f3f3f3f;
bool vis[N];
int prime[N],mu[N],cnt;
void getmu()
{
mu[] = ;
for(int i=; i<=N-; i++)
{
if(!vis[i])
{
prime[++cnt] = i;
mu[i] = -;
}
for(int j=; j<=cnt&&i*prime[j]<=N-; j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu[i*prime[j]] = ;
break;
}
}
}
}
LL solve(int n,int m,int k){
n/=k,m/=k;
int l=min(n,m);
LL ans=;
for(int i=,j;i<=l;i=j+){
j=min(n/(n/i),m/(m/i));
ans+=1ll*(mu[j]-mu[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
getmu();
for(int i=;i<=N-;++i)mu[i]+=mu[i-];
int T;
scanf("%d",&T);
while(T--){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",solve(b,d,k)-solve(b,c-,k)-solve(a-,d,k)+solve(a-,c-,k));
}
return ;
}

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  3. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  4. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  5. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  6. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  7. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  8. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  9. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

随机推荐

  1. Stable Matching 稳定匹配 婚姻算法 shapley 算法

    作者:jostree  转载请注明出处 http://www.cnblogs.com/jostree/p/4051286.html 稳定匹配问题:有N男N女,每个人对于异性都一个排名,先需要得到一种稳 ...

  2. head 头标签(转发)

    HTML head 头标签 paddingme | 04 Oct 2014 HTML head 头部分的标签.元素有很多,涉及到浏览器对网页的渲染,SEO 等等,而各个浏览器内核以及各个国内浏览器厂商 ...

  3. DataGridView实现分页

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Drawing; u ...

  4. 三种读写XML的方法

    XML文件是一种常用的文件格式,例如WinForm里面的app.config以及Web程序中的web.config文件,还有许多重要的场所都有它的身影.Xml是Internet环境中跨平台的,依赖于内 ...

  5. CentOS 6.6x64下编译gcc-4.7.4

    最近使用老版本的gcc发现一些问题,于是想尝试升级. 看了一些教程之后进行尝试,发现各类教程均会有一些小问题,于是在此记录一下本人的过程. 编译过程中参考的文章有如下几篇,在此表示感谢: http:/ ...

  6. 用shell查找某个目录下最大文件

    网上资料学习: 1.查找当前目录下最大文件(包括子目录里文件): find . -type f -exec stat -c "%s %n" {} \; | sort -nr | h ...

  7. MVC-起始页面设置

    MVC的URL是通过路由映射的,因为我们可以通过修改RouteConfig来改变应用的起始页面. public class RouteConfig { public static void Regis ...

  8. MVC-登录并设置角色

    1.新建一个类,设置角色: using System; using System.Collections.Generic; using System.Linq; using System.Text; ...

  9. Jquery animate的使用方法

    js: $('#colspan').click(function () { if ($('#colspan').hasClass('glyphicon-chevron-up')) { $('#cols ...

  10. chmod,chown和chgrp的区别

    1.chgrp(转变文件所属用户组)change group chgrp 用户组 文件名 ###便是这个格了.若是整个目次下的都改,则加-R参数用于递归. 如:chgrp -R user smb.co ...