思路:以bzoj1119为例,题目已经给出了置换,而每一次交换的代价是交换二者的权值之和,而置换一定是会产生一些环的,这样就可以只用环内某一个元素去置换而使得其余所有元素均在正确的位置上,显然要选择环内最小的数,但也可能存在一个数使得它不在当前处理的环内而它先与当前环内某个数进行交换,然后再在环内进行交换,再将之前那个数换回来,这样也显然要选择所有元素中最小的和当前环内最小的进行交换,然后取个min即可。然后还要注意可能当前环内最小的就是所有元素中最小的,特判一下即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 1000100
#define inf 1e9 int n,minval=inf,tot;
long long ans;
int a[maxn],pos[maxn],b[maxn],val[maxn],next[maxn];
bool vis[maxn]; int read(){
int x=,f=;char ch=getchar();
for (;ch<''||ch>'';ch=getchar()) if (ch=='-') f=-;
for (;ch>='' && ch<='';ch=getchar()) x=x*+ch-'';
return x*f;
} int main(){
n=read();
for (int i=;i<=n;i++) val[i]=read(),minval=min(minval,val[i]);
for (int i=;i<=n;i++) a[i]=read(),pos[a[i]]=i;
for (int i=;i<=n;i++) b[i]=read(),next[pos[a[i]]]=pos[b[i]];
for (int i=;i<=n;i++)
if (!vis[i]){
long long sum=;int size=,v=inf;
while (!vis[i]) vis[i]=,size++,sum+=val[a[i]],v=min(v,val[a[i]]),i=next[i];
if (size<=) continue;
long long ans1=sum-v+1ll*v*(size-),ans2=sum+v+1ll*minval*(size+);
if (v!=minval) ans+=min(ans1,ans2);else ans+=ans1;
}
printf("%lld\n",ans);
}

bzoj1119

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 100100
#define inf 1e9 int n,minval=inf,ans;
int tmp[maxn],val[maxn],pos[maxn],next[maxn];
bool vis[maxn]; int read(){
int x=,f=;char ch=getchar();
for(;ch<'' || ch>'';ch=getchar())if (ch=='-') f=-;
for(;ch>='' && ch<='';ch=getchar()) x=x*+ch-'';
return x*f;
} int main(){
n=read();
for (int i=;i<=n;i++) tmp[i]=val[i]=read(),pos[val[i]]=i,minval=min(minval,val[i]);
sort(tmp+,tmp+n+);
for (int i=;i<=n;i++) next[pos[tmp[i]]]=pos[val[i]];
for (int i=;i<=n;i++){
int sum=,size=,v=inf;
while (!vis[i]) vis[i]=,size++,sum+=val[i],v=min(v,val[i]),i=next[i];
if (size<=) continue;
int ans1=sum+v*(size-),ans2=sum+minval*(size+)+v;
if (minval!=v) ans+=min(ans1,ans2);else ans+=ans1;
}
printf("%d\n",ans);
return ;
}

bzoj1697

bzoj1697:[Usaco2007 Feb]Cow Sorting牛排序 & bzoj1119:[POI2009]SLO的更多相关文章

  1. BZOJ1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 387  Solved: 215[S ...

  2. BZOJ1119[POI2009]SLO && BZOJ1697[Usaco2007 Feb]Cow Sorting牛排序

    Problem J: [POI2009]SLO Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 622  Solved: 302[Submit][Sta ...

  3. [BZOJ1697][USACO2007 FEB]Cow Sorting牛排序:贪心+置换

    分析 一个月前做的一道题补一下题解,就简单写一写吧. 单独考虑每一个循环节,如果只进行内部的调整,最优方案显然是把最小的绕这个循环交换一圈. 但是借助全局最小值可能使答案更优,两种情况取个\(\max ...

  4. BZOJ_1697_[Usaco2007 Feb]Cow Sorting牛排序_贪心

    BZOJ_1697_[Usaco2007 Feb]Cow Sorting牛排序_贪心 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行 ...

  5. 【BZOJ 1697】1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大 ...

  6. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序

    Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都是一个 ...

  7. 【BZOJ】1697: [Usaco2007 Feb]Cow Sorting牛排序(置换群)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1697 置换群T_T_T_T_T_T_T 很久以前在黑书和白书都看过,,,但是看不懂... 然后找了本 ...

  8. BZOJ 1697: [Usaco2007 Feb]Cow Sorting牛排序(置换+贪心)

    题面 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序.每一头牛的脾气都 ...

  9. 【BZOJ】1697: [Usaco2007 Feb]Cow Sorting牛排序

    [算法]数学置换 [题意]给定n个数,要求通过若干次交换两个数的操作得到排序后的状态,每次交换代价为两数之和,求最小代价. [题解] 考虑置换的定义:置换就是把n个数做一个全排列. 从原数组到排序数组 ...

随机推荐

  1. Storm系列(十五)架构分析之Executor-Spout

    Spout实现mk-threads接口用于创建与Executor对应的消息循环主函数. defmulti mk-threads executor-selector Mk-threads函数的主消息循环 ...

  2. HW1.3

    public class Solution { public static void main(String[] args) { System.out.println(" J A V V A ...

  3. cnUVA情况

    http://cn_uva.jd-app.com/ 欢迎访问

  4. 【转】基于RMAN实现坏块介质恢复(blockrecover)

    本文转自:乐沙弥的世界 对于物理损坏的数据块,我们可以通过RMAN块介质恢复(BLOCK MEDIA RECOVERY)功能来完成受损块的恢复,而不需要恢复整个数据库或所有文件来修复这些少量受损的数据 ...

  5. 彻底解决iOS项目中 &quot;_OBJC_CLASS_$_XXXService&quot;, referenced from: 的相似问题

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmllcGVuZzEwOQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  6. (8)Launcher3客制化之ContentProvider内容提供者,实现其它应用改动数据库更新等操作

    首先加入两个权限 <uses-permission android:name="com.android.launcher3.permission.READ_SETTINGS" ...

  7. MySQL【第二篇】基本命令

    一.连接MySQL 登录 mysql 有两种方式: 远程主机:mysql -h主机地址 -u用户名 -p密码 -P端口号 本机:mysql -h主机地址 -u用户名 -p密码 -P端口号 如果端口号是 ...

  8. Android主题切换方案总结

    所谓的主题切换,就是能够根据不同的设定,呈现不同风格的界面给用户,也就是所谓的换肤. 1.将主题包(图片与配置)存到SD卡上(可通过下载或手动放入指定目录),在代码里强制从本地文件创建图片与配置文字大 ...

  9. Android(java)学习笔记142:使用Sqlite基本流程

  10. p

    都不知道简历去投什么地方.游戏都卖不出去,又做不出口碑好的.这些人是心存侥幸还是心存坚持. 感觉自己搞不清楚就很难再出发.