题目链接

题意:

  击球训练中, 你击中一个球的概率为p,连续击中k1个球, 或者连续击空k2个球, 则训练结束。

  求结束训练所击球次数的期望。

思路:

  设f[x]为连续击中x个球, 距离结束训练所需要的期望

  设g[x]为连续击空x个球, 距离结束训练所需要的期望

    f[x] = p * (f[x + 1] + 1) + (1 - p) * (g[1] + 1)

    g[x] = p * (f[1] + 1) + (1 - p) * (g[x + 1] + 1)

  令 x = (1 - p) * (g[1] + 1)

  迭代f[x] 得到f[1]的表达式为:

                f[1] = p^(k - 2) * x + p^(k - 3) * x + ... + p ^ 0 * x。

                f[1] = x * ( (1 - p ^ (k - 1))/ (1 - p))

  一样的解法,求出g[1]的表达式,再将f[1]代进g[1] 的表达式, 解得g[1].

  再将g[1]反代入f[1]的表达式, 解得f[1]。

  最后答案为 ans = p * (f[1] + 1) + (1 - p) * (g[1] + 1)

代码:

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define eps 1e-6
#define MAXN 1000000
#define MAXM 100
#define dd cout<<"debug"<<endl
#define p(x) printf("%d\n", x)
#define pd(x) printf("%.7lf\n", x)
#define k(x) printf("Case %d: ", ++x)
#define s(x) scanf("%d", &x)
#define sd(x) scanf("%lf", &x)
#define mes(x, d) memset(x, d, sizeof(x))
#define do(i, x) for(i = 0; i < x; i ++)
#define dod(i, x, l) for(i = x; i >= l; i --)
#define doe(i, x) for(i = 1; i <= x; i ++)
double p;
int k1, k2;
double qpow(double x, int k)
{
double res = 1.0;
while(k)
{
if(k & ) res *= x;
x *= x;
k >>= ;
}
return res;
} int main()
{
int T;
int kcase = ;
scanf("%d", &T);
while(T --)
{
scanf("%lf %d %d", &p, &k1, &k2);
if(p == 0.000)
printf("Case %d: %d\n", ++ kcase, k1);
else if(p == 1.000)
printf("Case %d: %d\n", ++ kcase, k2);
else
{
double q = 1.0 - p;
double x1 = 1.0 - qpow(p, k2 - );
double x2 = 1.0 - qpow(q, k1 - );
double f = x1 * x2 / q + x2 / p;
f = f / ( - x1 * x2);
double g = q * f * x1 / q + x1 / q;
double ans = q * f + p * g + 1.0;
printf("Case %d: %.3lf\n", ++ kcase, ans);
}
}
return ;
}

LightOj_1408 Batting Practice的更多相关文章

  1. Batting Practice LightOJ - 1408

    Batting Practice LightOJ - 1408(概率dp) 题意:有无限个球,进球的概率为p,问你连续不进k1个球或者连续进k2个球需要使用的球的个数的期望 思路: \(定义f[i]表 ...

  2. lightoj 1408 Batting Practice (概率问题,求期望,推公式)

    题意:一个人若连续进k1个球或连续不进k2个球,游戏结束,给出这个人不进球的概率p(注意:是不进球!!!),求到游戏结束时这个投球个数的期望. 不进球概率为p,进概率 q=1-p.设 f[i] 表示连 ...

  3. lightoj 1408 Batting Practice

    题意:一个人若连续进k1个球或连续不进k2个球,游戏结束,给出这个人进球的概率p,求到游戏结束时这个投球个数的期望. 进球概率为p,不进概率 q=1-p 设 f[i] 表示连续 i 次不进距离连续k2 ...

  4. 越狱Season 1-Episode 15: By the Skin and the Teeth

    Season 1, Episode 15: By the Skin and the Teeth -Pope: doctor...you can leave. 医生你得离开 -Burrows: It's ...

  5. KUANGBIN带你飞

    KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题    //201 ...

  6. [kuangbin带你飞]专题1-23题目清单总结

    [kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...

  7. ACM--[kuangbin带你飞]--专题1-23

    专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...

  8. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  9. Atitit 数据存储视图的最佳实际best practice attilax总结

    Atitit 数据存储视图的最佳实际best practice attilax总结 1.1. 视图优点:可读性的提升1 1.2. 结论  本着可读性优先于性能的原则,面向人类编程优先于面向机器编程,应 ...

随机推荐

  1. I'm back

    亲爱的博友们, 请忽略这一条, 这只是我个人的一个记录.

  2. 关于Fragment与Fragment、Activity通信的四种方式

    一直想总结一下Fragment与Fragment.Activity通信的问题,今天有时间一共总结了三种,权当抛砖引玉,如果大家还有更好的方式来实现Fragment和Fragment.Activity的 ...

  3. JSP 笔记

    <%@ page contentType="text/html;charset=UTF-8"%> <!-- 字符编码为utf-8,不然会乱码.... --> ...

  4. C#扫盲之:String字符串的常用方法和冷知识

    前言 字符串对于任何编程语言都是必须操作和了解的,因为在实际编程中,任何项目和工程都必须要处理字符串数据,文件路径.提示消息,文本的处理等等,而在使用过程中很多人都是没有系统的了解,大量使用strin ...

  5. ajax 特殊参数值无法传到后台问题

    用原生的ajax请求后台的登录功能,使用特殊字符作为密码的时候发现无法把参数传到后台;发现前端就报错了.可能是因为特殊符号吧. 用 encodeURIComponent() 这个方法进行编码之后就可以 ...

  6. SQL Server自动化运维系列 - 监控磁盘剩余空间及SQL Server错误日志(Power Shell)

    需求描述 在我们的生产环境中,大部分情况下需要有自己的运维体制,包括自己健康状态的检测等.如果发生异常,需要提前预警的,通知形式一般为发邮件告知. 在所有的自检流程中最基础的一个就是磁盘剩余空间检测. ...

  7. [转]:移动端H5页面高清多屏适配方案

    原文链接:http://www.tuicool.com/articles/YJviea 背景 开发移动端H5页面 面对不同分辨率的手机 面对不同屏幕尺寸的手机 视觉稿 在前端开发之前,视觉MM会给我们 ...

  8. [Java][20160707]Java语言介绍

    Java最早的名称叫"oak"后来改名叫"Java". Java最早是属于"Sun"公司的, 后来被"Oracle"公司 ...

  9. Java工具类:获取long型唯一ID

    直接上代码: import java.text.SimpleDateFormat; import java.util.Date; /** * 获取long型唯一ID */ public class I ...

  10. 淘宝可以传照片搜索商品,verygood.雅客VC多味水果糖

    奶奶喜欢吃点硬糖.在当地买了些说是不好.到是一个亲戚买的一种糖比较满意(好久了都快融化了). 但是我只有照片,能知道品牌,在jd没这样一样的商品了. 还好借助淘宝的传照片功能,找到了.