题目链接: BZOJ - 3209

题目大意

设 f(x) 为 x 的二进制表示中 1 的个数。给定 n ,求 ∏ f(i)     (1 <= i <= n) 。

题目分析

总体思路是枚举每一个 t ,算出 f(x) = t 的 x 有 y 个,然后将 t^y 算入答案中。

主要的过程是求 y ,也就是代码中的 Solve(t) 。

详见代码吧,我只能看别人的题解,自己想不出来QAQ

注意:WA警告!WA警告!

Warning!Warning!Warning!

在涉及到计算 a^b%p 的计算中,a 可以先 mod p ,但是 b 不可以!!!计算 b 的时候,因为 b 之后要作为指数,所以绝对不能取模!!!!!

在这道题中,组合数不能取模!!!Solve() 不能取模!!!因为这些都与指数有关!!

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std; typedef long long LL; const int MaxL = 60 + 5;
const LL Mod = 10000007; LL n, Ans;
LL C[MaxL][MaxL];
int l, Bit[MaxL]; void Init_C() {
for (int i = 0; i <= 60; ++i) {
C[i][0] = 1;
for (int j = 1; j <= i; ++j)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
} LL Solve(int x) {
LL ret = 0;
for (int i = l; i >= 1; --i) {
if (Bit[i] == 1) {
ret += C[i - 1][x];
--x;
}
if (x < 0) break;
}
return ret;
} LL Pow(LL a, LL b) {
LL ret = 1, f = a % Mod;
while (b) {
if (b & 1) {
ret *= f;
ret %= Mod;
}
b >>= 1;
f *= f;
f %= Mod;
}
return ret;
} int main()
{
Init_C();
while (scanf("%lld", &n) != EOF) {
++n;
l = 0;
while (n) {
Bit[++l] = n & 1;
n >>= 1;
}
Ans = 1ll;
for (int i = 1; i <= l; ++i)
Ans = Ans * Pow(i, Solve(i)) % Mod;
printf("%lld\n", Ans);
}
return 0;
}

  

[BZOJ 3209] 花神的数论题 【数位统计】的更多相关文章

  1. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  2. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  3. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  4. bzoj 3209 花神的数论题——二进制下的数位dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...

  5. BZOJ 3209: 花神的数论题【数位dp】

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  6. [数位dp] bzoj 3209 花神的数论题

    题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...

  7. [BZOJ 3209]花神的数论题

    一道简单的数位 dp 题 但是脑子里只有 __builtin_popcountll 了呢(自重) 看完题解后很快就理解了,而且有一种这么简单的题居然没想到做法真是不应该唉~的感觉 用 f[i] 表示 ...

  8. bzoj3209:3209: 花神的数论题

    觉得还是数位dp的那种解题形式但是没有认真的想,一下子就看题解.其实还是设置状态转移.一定要多思考啊f[i][j]=f[i-1][j]+g[i-1][j] g[i][j]=f[i-1][j-1]+g[ ...

  9. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

随机推荐

  1. Myeclipse2013 SVN安装方法

    1. 打开Help下的Install from Site 2. 弹出窗口,如下图: 3. 点击Add标签,如图: 在对话框Name输入Svn, URL中输入:http://subclipse.tigr ...

  2. [Javascript] Manage Application State with Immutable.js

    Learn how Immutable.js data structures are different from native iterable Javascript data types and ...

  3. Guangsoushensou 2

    <span style="color:#330099;">/* C - 广搜 基础 Time Limit:1000MS Memory Limit:65536KB 64b ...

  4. [转] JavaScript 和事件

    与浏览器进行交互的时候浏览器就会触发各种事件.比如当我们打开某一个网页的时候,浏览器加载完成了这个网页,就会触发一个 load 事件:当我们点击页面中的某一个“地方”,浏览器就会在那个“地方”触发一个 ...

  5. struts2 convention-plugin实现零配置

    零配置并不是没有配置,而是通过约定大于配置的方式,大量通过约定来调度页面的跳转而使得配置大大减少.使得Action等配置不必写在Struts.xml中. convention-plugin的约定 1. ...

  6. Oracler读取各种格式的相关日期格式

    CREATE OR REPLACE Package Pkg_Stm_Date As     --Purpose:相关日期处理功能包          --获取某一天是第几周     Function ...

  7. win7、xp下Meclipse SVN用户名修改

    Meclipse SVN用户名修改,在网上查找后发现如下方法: 1.查看你的Eclipse中使用的是什么SVNInterface windows>preference>Team>SV ...

  8. 屏蔽Codeforces做题时的Problem tags提示

    当在Codeforces上做题的时,有时会无意撇到右侧的Problem tags边栏,但是原本并不希望能够看到它. 能否把它屏蔽了呢?答案是显然的,我们只需要加一段很短的CSS即可. span.tag ...

  9. php生成不重复随机字符串

    使用时间戳作为原始字符串,再随机生成五个字符随机插入任意位置,生成新的字符串,保证不重复 function rand($len) { $chars='ABCDEFGHIJKLMNOPQRSTUVWXY ...

  10. Orchard路由随记(一)

    对于Orchard来说,个人以为要真正理解Orchard,必须理解其路由工作方式. 一.Orchard的自定义路由由三种类型组成 1.分发类: HubRoute:其功能是按租户筛选出当前访问租户的路由 ...