[BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186
题目分析
题目要求出 [1, n!] 中有多少数与 m! 互质。(m <= n)
那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 x 与 m! 互质,即 gcd(m!, x) = 1,
那么 gcd(m!, m! + x) = 1, gcd(m!, m! * 2 + x) = 1, 即 x + k * m! 都与 m! 互质。
这样就很明确了,[1, n!] 中与 m! 互质的数有 phi(m!) * n! / m! 个。
怎么求 phi(m!) 呢?我们知道,一个数 x 如果包含 p^a ,那么 phi(x) 中就含有 p^(a-1) * (p - 1)。
也就是说, phi(x) = x / pi * (pi - 1) , pi 是枚举 x 包含的质数。那么 m! 包含的质数就是 [1, m] 的质数,线性筛就可以了。
最后化简 Ans = n! / pi * (pi - 1) 。pi 是 [1, m] 的质数。
代码
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; typedef long long LL; const int MaxN = 10000000 + 5, MN = 10000000; int T, Mod, n, m, Top, Ans;
int Prime[MaxN], Fac[MaxN], Inv[MaxN], Pi[MaxN]; bool isPrime[MaxN]; void Prepare()
{
for (int i = 1; i <= MN; ++i) isPrime[i] = true;
isPrime[1] = false;
for (int i = 2; i <= MN; ++i)
{
if (isPrime[i]) Prime[++Top] = i;
for (int j = 1; j <= Top && i * Prime[j] <= MN; ++j)
{
isPrime[i * Prime[j]] = false;
if (i % Prime[j] == 0) break;
}
}
Inv[1] = 1;
int q, r;
for (int i = 2; i <= MN; ++i)
{
q = Mod / i;
r = Mod % i;
Inv[i] = (int)((LL)(Mod - q) * (LL)Inv[r] % Mod);
}
Fac[0] = Pi[0] = 1;
for (int i = 1; i <= MN; ++i)
{
Fac[i] = (int)((LL)Fac[i - 1] * (LL)i % Mod);
if (isPrime[i]) Pi[i] = (int)((LL)Pi[i - 1] * (LL)Inv[i] % Mod * (LL)(i - 1) % Mod);
else Pi[i] = Pi[i - 1];
}
} int main()
{
scanf("%d%d", &T, &Mod);
Prepare();
for (int Case = 1; Case <= T; ++Case)
{
scanf("%d%d", &n, &m);
Ans = (int)((LL)Fac[n] * (LL)Pi[m] % Mod);
printf("%d\n", Ans);
}
return 0;
}
[BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】的更多相关文章
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】
题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论 对于两个正整数和,如果是的倍数,那么中与互素的数的个数为 本结论是很好证明的,因为中与互素的个数为,又知道, ...
- bzoj 2186: [Sdoi2008]沙拉公主的困惑
#include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...
- BZOJ 2186 SDOI2008 沙拉公主的困惑 数论
题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...
随机推荐
- Run-Time Check Failure #2 - Stack around the variable 'ucPriKey' was corrupt
Run-Time Check Failure #2 一般是栈被破坏,你的代码可能有缓冲区溢出一类的问题. Run-Time Check Failure #2 - Sta ...
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式 一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid b ...
- magic_quotes_runtime(魔术引号开关)
我们可以通过以下代码来探测php环境中magic_quotes_runtime是否开启: magic_runtime.php 源代码如下: <?php //当magic_quotes_runti ...
- android之tween动画详解
android中一共提供了两种动画,其一便是tween动画,tween动画通过对view的内容进行一系列的图像变换(包括平移,缩放,旋转,改变透明度)来实现动画效果,动画效果的定义可以使用xml,也可 ...
- Android(java)学习笔记172:BroadcastReceiver之 Android广播机制
Android广播机制 android系统中有各式各样的广播,各种广播在Android系统中运行,当"系统/应用"程序运行时便会向Android注册各种广播.Android接收到广 ...
- android打包签名介绍
Keytool 是一个有效的安全钥匙和证书的管理工具. Java 中的 keytool.exe (位于 JDK\Bin 目录下)可以用来创建数字证书,所有的数字证书是以一条一条(采用别名区别)的形式存 ...
- Mysql中int(1)的误解及说明
在mysql中使用int相关的数据类型时, 如果不太了解其存储方式, 会产生一些误用的情况. 如: 只保存0-9之间的数字, 可能会直接用int(1). 习惯性的以为int(1)就相当于varchar ...
- Linux 确定系统glibc版本
在shell中,可以直接运行glibc共享库文件获取glibc版本,CentOS下执行: /lib/libc.so. 输出为: GNU C Library stable release version ...
- Orcle数据库恢复
不知道什么原因,服务器上的数据库报错:ORA-01033:ORACLE initialization or shutdown in progress 首先检查:监听文件的主机名及端口号是否更改 数据文 ...
- c语言学习之基础知识点介绍(十):数组
本节主要介绍数组. 一.数组 /* 数组:一个变量可以存n个变量. 语法:类型 数组名[长度(正整数)]; 例如:int score[5];//定义了一个int类型的数组,长度为5,可以保存5个数据. ...