Combiner和Partitioner是用来优化MapReduce的,可以提高MapReduce的运行效率。下面我们来具体学习这两个组件

Combiner

我们以WordCount为例,首先通过下面的示意图直观的了解一下Combiner的位置和作用

从上图可以看出,Combiner介于 Mapper和Reducer之间,combine作为 Map任务的一部分,执行完 map 函数后紧接着执行combine,而reduce 必须在所有的 Map 任务完成后才能进行。 而且还可以看出combine的过程与reduce的过程类似,都是对相同的单词key合并其词频,很多情况下可以直接使用reduce函数来完成Combiner过程。

通过上面的分析,下面我们将深入理解 Combiner组件。

1、Combiner可以看做局部的Reducer(local reducer)。

1)Combiner作用是合并相同的key对应的value。

2)在Mapper阶段,不管Combiner被调用多少次,都不应改变 Reduce的输出结果。

3)Combiner通常与Reducer的逻辑是一样的,一般情况下不需要单独编写Combiner,直接使用Reducer的实现就可以了。

4)Combiner在Job中是如下设置的

job.setCombinerClass(Reducer.class);

// Combiner一般情况下,默认使用Reducer的实现

2、Combiner的好处

1)能够减少Map Task输出的数据量(即磁盘IO)。我们前面提到Map Task 将输出的数据写到本地磁盘,它输出的数据量越多,它写入磁盘的数据量就越大,那么开销就越大,速度就越慢。

2)能够减少Reduce-Map网络传输的数据量(网络IO)。这个很好理解,Map Task 输出越少,Reduce从Map结果中拉取的数据量就越少,自然就减少了网络传输的数据量。

3、Combiner 的使用场景

1)并不是所有的场景都可以使用Combiner,必须满足结果可以累加。

2)适合于Sum()求和,并不适合Average()求平均数。例如,求0、20、10、25和15的平均数,直接使用Reduce求平均数Average(0,20,10,25,15),得到的结果是14, 如果先使用Combiner分别  对不同Mapper结果求平均数,Average(0,20,10)=10,Average(25,15)=20,再使用Reducer求平均数Average(10,20),得到的结果为15,很明显求平均数并不适合使用Combiner。

Partitioner

我们通过如下示意图,很直观的看到 Partitioner 的位置和作用。

从上图我们可以看出,Partitioner 处于 Mapper阶段,当Mapper处理好数据后,这些数据需要经过Partitioner进行分区,来选择不同的Reducer处理,从而将Mapper的输出结果均匀的分布在Reducer上面执行。

通过上面的分析,下面我们将深入理解 Partitioner组件。

1、Partitioner决定了Map Task 输出的每条数据交给哪个Reduce Task 来处理。Partitioner 有两个功能:

1)均衡负载。它尽量将工作均匀地分配给不同的 Reduce。

2)效率。它的分配速度一定要非常快。

2、Partitioner 的默认实现:hash(key) mod R,这里的R代表Reduce Task 的数目,意思就是对key进行hash处理然后取模。很多情况下,用户需要自定义 Partitioner,比如“hash(hostname(URL)) mod R”,它确保相同域名下的网页交给同一个 Reduce Task 来处理。 用户自定义Partitioner,需要继承Partitioner类,实现它提供的一个方法

getPartition(Text key, Text value, int numPartitions);

前两个参数分别为Map的key和value。numPartitions 为 Reduce 的个数,用户可以自己设置。

如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【刘超★ljc】。

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

MapReduce优化的更多相关文章

  1. mapreduce优化总结

    集群的优化 1.合理分配map和reduce任务的数量(单个节点上map任务.reduce任务的最大数量) 2.其他配置 io.file.buffer.size hadoop访问文件的IO操作都需要通 ...

  2. hadoop mapreduce 优化

    http://www.cnblogs.com/c840136/archive/2013/03/10/2952887.html http://irwenqiang.iteye.com/blog/1535 ...

  3. map-reduce 优化

    map阶段优化 参数:io.sort.mb(default 100) 当map task开始运算,并产生中间数据时,其产生的中间结果并非直接就简单的写入磁盘. 而是会利用到了内存buffer来进行已经 ...

  4. MapReduce优化参数

    资源相关参数 //以下参数是在用户自己的 MapReduce 应用程序中配置就可以生效 (1) mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上限(单位:MB) ...

  5. 【Hadoop】MapReduce笔记(四):MapReduce优化策略总结

    Cloudera 提供给客户的服务内容之一就是调整和优化MapReduce job执行性能.MapReduce和HDFS组成一个复杂的分布式系统,并且它们运行着各式各样用户的代码,这样导致没有一个快速 ...

  6. MapReduce优化一(改变切片大小和Shuffle过程Reduce占用堆大小)

    /*为防止处理超大作业时超时,将io时间设为1小时         *         <property>            <name>dfs.datanode.soc ...

  7. MapReduce 基本优化相关参数

    MapReduce优化优化(1)资源相关参数:以下参数是在自己的 MapReduce 应用程序中配置就可以生效 mapreduce.map.memory.mb: 一个 Map Task 可使用的内存上 ...

  8. hadoop 学习笔记:mapreduce框架详解

    开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

  9. Hadoop学习笔记:MapReduce框架详解

    开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

随机推荐

  1. Visual c++ 2012 软件错误

    vs2012 未能正确加载"Visual C++ Language Manager Package"包 解决办法 如下图所示: 到官网下载更新即可. http://www.micr ...

  2. git 创建多个账户ssh

    创建一个账户 创建ssh本地秘钥. $ ssh-keygen -t rsa -C "youremail@xxx.com" 一路回车,会在~/.ssh/目录下生成id_rsa和id_ ...

  3. Hive的MoveTask错误

    最近在部署Hive上线,结果在线上线下同时出现了MoveTask报错的现象,虽然两者错误的日志以及错误信息一样,但是经过分析解决又发现两者的原因是不一样的. 首先线下的错误日志: 2015-05-18 ...

  4. Codeforces Round #315 (Div. 2)

    这次可以说是最糟糕的一次比赛了吧, 心没有静下来好好的去思考, 导致没有做好能做的题. Problem_A: 题意: 你要听一首时长为T秒的歌曲, 你点击播放时会立刻下载好S秒, 当你听到没有加载到的 ...

  5. python 运行 hadoop 2.0 mapreduce 程序

    要点:#!/usr/bin/python 因为要发送到各个节点,所以py文件必须是可执行的. 1) 统计(所有日志)独立ip数目,即不同ip的总数 ####################本地测试## ...

  6. LINUX TOP,不是这样玩地!!!

    老同志遇到新问题了. TOP显示完全不是我要的,CPU,内存都是0.每个CPU还分别显示. 网上搜下,原来是A(显示风格)R(反向排序)P,M(CPU,内存排序)之类引起的. 记下了.

  7. (转)Mono for Android 优势与劣势

    最近有兴趣了解一下Mono for Andriod,也就是使用.NET平台来开发Andriod程序.Mono for Android API 几乎映射标准的Andriod API.例如,两边API几乎 ...

  8. 【HDOJ】1829 A Bug's Life

    并查集变型.题意就是x与y是互斥的,下列是否数据是否可保证x-y是否均为互斥. #include <cstdio> #include <cstring> #define MAX ...

  9. WordPress /wp-admin/includes/post.php user_ID 参数操作权限提升漏洞

    漏洞版本: WordPress 3.6 漏洞描述: Bugtraq ID:62346 CVE ID:CVE-2013-4340 WordPress是一种使用PHP语言开发的博客平台,用户可以在支持PH ...

  10. Sublime Text 2 中文包

    下载中文包 大家直接下载吧 http://download.csdn.net/detail/onebelowzero2012/9331981 注意解压路径,一开始我以为D:\MySublime\Sub ...