BNUOJ 13098 约瑟夫环问题
C. Josephus Problem
题目链接:http://www.bnuoj.com/v3/contest_show.php?cid=7095#problem/C
题目描述
The historian Flavius Josephus relates how, in the Romano-Jewish conflict of 67 A.D., the Romans took the town of Jotapata which he was commanding. Escaping, Josephus found himself trapped in a cave with 40 companions. The Romans discovered his whereabouts and invited him to surrender, but his companions refused to allow him to do so. He therefore suggested that they kill each other, one by one, the order to be decided by lot. Tradition has it that the means for affecting the lot was to stand in a circle, and, beginning at some point, count round, every third person being killed in turn. The sole survivor of this process was Josephus, who then surrendered to the Romans. Which begs the question: had Josephus previously practiced quietly with 41 stones in a dark corner, or had he calculated mathematically that he should adopt the 31st position in order to survive?
Now you are in a similar situation. There are n persons standing in a circle. The persons are numbered from 1 to n circularly. For example, 1 and n are adjacent and 1 and 2 are also. The count starts from the first person. Each time you count up to k and thekth person is killed and removed from the circle. Then the count starts from the next person. Finally one person remains. Given nand k you have to find the position of the last person who remains alive.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case contains two positive integers n (1 ≤ n ≤ 105) and k (1 ≤ k < 231).
Output
For each case, print the case number and the position of the last remaining person.
Sample Input
Sample Input |
Output for Sample Input |
|
6 2 1 2 2 3 1 3 2 3 3 4 6 |
Case 1: 2 Case 2: 1 Case 3: 3 Case 4: 3 Case 5: 2 Case 6: 3 |
#include<stdio.h>
int f(int n, int m)
{
int r = ;//即f(1)=0;
for(int i = ; i <= n; i++)
r = (r + m) % i;//即f(i)=[f(i-1)+m]%n;
return r + ; //即f(n)=1;
}
int main()
{
int t,n,k;
int oo=;
scanf("%d",&t);
while(t--) scanf("%d%d",&n,&k),printf("Case %d: %d\n",oo++,f(n,k));
return ;
}
代码
BNUOJ 13098 约瑟夫环问题的更多相关文章
- C#实现约瑟夫环问题
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace orde ...
- C语言数组实现约瑟夫环问题,以及对其进行时间复杂度分析
尝试表达 本人试着去表达约瑟夫环问题:一群人围成一个圈,作这样的一个游戏,选定一个人作起点以及数数的方向,这个人先数1,到下一个人数2,直到数到游戏规则约定那个数的人,比如是3,数到3的那个人就离开这 ...
- C语言链表实现约瑟夫环问题
需求表达:略 分析: 实现: #include<stdio.h> #include<stdlib.h> typedef struct node { int payload ; ...
- javascript中使用循环链表实现约瑟夫环问题
1.问题 传说在公元1 世纪的犹太战争中,犹太历史学家弗拉维奥·约瑟夫斯和他的40 个同胞被罗马士兵包围.犹太士兵决定宁可自杀也不做俘虏,于是商量出了一个自杀方案.他们围成一个圈,从一个人开始,数到第 ...
- tc 147 2 PeopleCircle(再见约瑟夫环)
SRM 147 2 600PeopleCircle Problem Statement There are numMales males and numFemales females arranged ...
- HDU 3089 (快速约瑟夫环)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3089 题目大意:一共n人.从1号开始,每k个人T掉.问最后的人.n超大. 解题思路: 除去超大的n之 ...
- 约瑟夫环(Josehpuse)的模拟
约瑟夫环问题: 0,1,...,n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字,求出这个圆圈里剩下的最后一个数字. 这里给出以下几种解法, 1.用队列模拟 每次将前m-1个元 ...
- C++ 约瑟夫环问题
约瑟夫环比较经典了 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直 ...
- 约瑟夫环的java解决
总共3中解决方法,1.数学推导,2.使用ArrayList递归解决,3.使用首位相连的LinkedList解决 import java.util.ArrayList; /** * 约瑟夫环问题 * 需 ...
随机推荐
- HDU_1505_矩阵中的最大矩形_dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1505 City Game Time Limit: 2000/1000 MS (Java/Others) ...
- PHP 之QQ第三方登录
一.下载QQ SDK 下载地址:http://wiki.open.qq.com/wiki/mobile/SDK 二.配置SDK 三.具体代码 login.html <!DOCTYPE html& ...
- Microsoft Access Engine
在64位Win7操作系统中安装Microsoft Access Engine的解决方案 原创 2014年01月06日 19:33:56 44847 现在的Win7系统中安装的一般都是32位的Offic ...
- vue基础---表单输入绑定
[一]基础用法 用 v-model 指令在表单 <input>.<textarea> 及 <select> 元素上创建双向数据绑定.它会根据控件类型自动选取正确的方 ...
- 搭建Cookie池
很多时候我们在对网站进行数据抓取的时候,可以抓取一部分页面或者接口,这部分可能没有设置登录限制.但是如果要抓取大规模数据的时候,没有登录进行爬取会出现一些弊端.对于一些设置登录限制的页面,无法爬取对于 ...
- Java基本输入输出
Java基本输入输出 基本输入 基本输出 package com.ahabest.demo; public class Test { public static void main(String[] ...
- java基础学习日志--String、StringBuffer方法案例
package StringDemo; import java.util.Arrays; /* * 常用String.StringBufer类的方法 */ public class Demo1 { p ...
- <SpringMvc>入门四 响应结果
1.响应String类型 根据试图解析器,去找相对应的jsp Model将对象存在request中 2.响应void类型 可以看出,此时void方法执行了,系统默认会去找testVoid.jsp 意思 ...
- HP下kafka的实践
kafka 简介 Kafka 是一种高吞吐量的分布式发布订阅消息系统 kafka角色必知 producer:生产者. consumer:消费者. topic: 消息以topic为类别记录,Kafka将 ...
- Tampermonkey脚本安装问题及自用脚本推荐
对于高手来说,chrome浏览器中即使没有其他任何chrome插件,可能都无关紧要.但是有一个插件必不可少, 那就是Tampermonkey油猴插件.Tampermonkey是Chrome上最流行的用 ...