棋盘问题

传送门

题目描述

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

题解

状压dp dp[i][j]表示第I行此时状态为j的方案数.j表示列的状态

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int cnt,ans,n,k,dp[][<<];
char mp[][];
int main(){
while(scanf("%d%d",&n,&k)!=EOF){
ans=;
memset(dp,,sizeof(dp));
if(n==-&&k==-)break;
for(int i=;i<=n;i++)
scanf("%s",mp[i]);
dp[][]=;
for(int i=;i<=n;i++){
for(int j=;j<(<<n);j++){
for(int p=;p<n;p++){
if(mp[i][p]=='#'&&(j&(<<p))==)
dp[i][j|(<<p)]+=dp[i-][j];
} dp[i][j]+=dp[i-][j];
}
}
for(int j=;j<(<<n);j++){
cnt=;int i=j;
for(;i;i-=i&-i)cnt++;//i&(-i)一直找最后一个1
if(cnt==k)ans+=dp[n][j];
}
printf("%d\n",ans);
}
return ;
}

棋盘问题(dp)的更多相关文章

  1. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  2. P1169 [ZJOI2007]棋盘制作 DP悬线法

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  3. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  4. [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]

    [luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...

  5. bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]

    Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...

  6. T2980 LR棋盘【Dp+空间/时间优化】

    Online Judge:未知 Label:Dp+滚动+前缀和优化 题目描述 有一个长度为1*n的棋盘,有一些棋子在上面,标记为L和R. 每次操作可以把标记为L的棋子,向左移动一格,把标记为R的棋子, ...

  7. POJ 1191 棋盘分割(DP)

    题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...

  8. NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论

    http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...

  9. BZOJ 1813 [Cqoi2017]小Q的棋盘 ——树形DP

    唔,貌似以前做过这样差不多的题目. 用$f(i,0/1)$表示从某一点出发,只能走子树的情况下回到根.不回到根的最多经过不同的点数. 然后就可以DP辣 #include <map> #in ...

随机推荐

  1. eslint 在webstorm配置

    1.安装nodejs和eslint 2.在 webstorm 的 file - setting搜索eslint,配置eslint路径 3.在项目目录下新建.eslintrc文件 4.配置eslint ...

  2. 单片机C51串口发送、接收寄存器

    所以,发送和接收寄存器可使用同一地址,编写验证程序(发送和接收是独立空间):读取一个数(1)->发送一个数(2)->再读取得1则是独立空间 不知道STM32串口寄存器和C51串口寄存器是否 ...

  3. ELK之Kibana部署、收集系统日志、一个文件收集多个日志

    1.安装及配置Kibana cd /usr/local/src yum -y install kibana-5.4.0-x86_64.rpm grep "^[a-Z]" /etc/ ...

  4. argument to nsmutablearray method addobject cannot be nil 警告

    You cannot add nil to an NSMutableArray, and you will raise an exception if you try to. There's NSNu ...

  5. Mysql数据库中CURRENT_TIMESTAMP和ON UPDATE CURRENT_TIMESTAMP区别

    如图所示,mysql数据库中,当字段类型为timestamp时,如果默认值取CURRENT_TIMESTAMP,则在insert一条记录时,end_time的值自动设置为系统当前时间,如果勾选了 ON ...

  6. js 中 Map/Set 集合

      Map Map是一组键值对的结构,具有极快的查找速度. 举个例子,假设要根据同学的名字查找对应的成绩,如果用Array实现,需要两个Array: 1 var names = ['Michael', ...

  7. Servlet的部署开发细节以及注意事项

    学习servlet最困难的我感觉还是配置,一開始是非常麻烦的.为了较好的学习,一開始还是以手动开发我认为比較好,可是真的有点把握给搞晕了,尤其是部署servlet方面非常麻烦,这里做一下简单的总结,前 ...

  8. Android NDK JNI WARNING: illegal start byte 0x

    今天攻克了JNI WARNING: illegal start byte 0x81这个问题. 问题出现的现象是通过jni调用加密方法,调用之后返回密文内容,结果就出现这个问题. 在国外查找一段时间之后 ...

  9. SpringMVC实战(注解)

    1.前言 前面几篇介绍了SpringMVC中的控制器以及视图之间的映射方式,这篇来解说一下SpringMVC中的注解,通过注解能够非常方便的訪问到控制器中的某个方法. 2.配置文件配置 2.1 注解驱 ...

  10. PowerDesigner逆向工程,从SQL Server数据库生成Physical Model

    提前声明:这种方式貌似只能是Power Designer安装在数据库服务器的时候才可以,因为我按照成功的这个再去从本机逆向连接远程服务器的时候,一直提示:test failed......不讲了,尴尬 ...