HUNAN 11562 The Triangle Division of the Convex Polygon(大卡特兰数)
http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11562&courseid=0
求n边形分解成三角形的方案数。
就是求n-2个卡特兰数,从大神那盗取了一份模板,效率极高.同时也很复杂.
#include <cstdio>
#include <cmath>
#include <stdlib.h>
#include <memory.h>
typedef int typec;
typec GCD(typec a, typec b)
{
return b? GCD(b, a % b) : a;
}
typec extendGCD(typec a, typec b, typec& x, typec& y)
{
if(!b) return x = , y = , a;
typec res = extendGCD(b, a % b, x, y), tmp = x;
x = y, y = tmp -(a/b)*y;
return res;
}
typec power(typec x, typec k)
{
typec res = ;
while(k)
{
if(k&) res *= x;
x *= x, k >>= ;
}
return res;
}
typec powerMod(typec x, typec k, typec m)
{
typec res = ;
while(x %= m, k)
{
if(k&) res *= x, res %= m;
x *= x, k >>= ;
}
return res;
}
typec inverse(typec a, typec p, typec t = )
{
typec pt = power(p, t);
typec x, y;
y = extendGCD(a, pt, x, y);
return x < ? x += pt : x;
}
typec linearCongruence(typec a, typec b, typec p, typec q)
{
typec x, y;
y = extendGCD(p, q, x, y);
x *= b - a, x = p * x + a, x %= p * q;
if(x < ) x += p * q;
return x;
}
const int PRIMEMAX = ;
int prime[PRIMEMAX + ];
int getPrime()
{
memset(prime, , sizeof(int) * (PRIMEMAX + ));
for(int i = ; i <= PRIMEMAX; i++)
{
if(!prime[i]) prime[++prime[]] = i;
for(int j = ; j <= prime[] && prime[j] <= PRIMEMAX/i; j++)
{
prime[prime[j]*i] = ;
if(i % prime[j] == ) break;
}
}
return prime[];
}
int factor[][], facCnt;
int getFactors(int x)
{
facCnt = ;
int tmp = x;
for(int i = ; prime[i] <= tmp / prime[i]; i++)
{
factor[facCnt][] = , factor[facCnt][] = ;
if(tmp % prime[i] == )
factor[facCnt][] = prime[i];
while(tmp % prime[i] == )
factor[facCnt][]++, factor[facCnt][] *= prime[i], tmp /= prime[i];
if(factor[facCnt][]) facCnt++;
}
if(tmp != ) factor[facCnt][] = tmp, factor[facCnt][] = tmp, factor[facCnt++][] = ;
return facCnt;
}
typec combinationModPt(typec n, typec k, typec p, typec t = )
{
if(k > n) return ;
if(n - k < k) k = n - k;
typec pt = power(p, t);
typec a = , b = k + , x, y;
int pcnt = ;
while(b % p == ) pcnt--, b /= p;
b %= pt;
for(int i = ; i <= k; i++)
{
x = n - i + , y = i;
while(x % p == ) pcnt++, x /= p;
while(y % p == ) pcnt--, y /= p;
x %= pt, y %= pt, a *= x, b *= y;
a %= pt, b %= pt;
}
if(pcnt >= t) return ;
extendGCD(b, pt, x, y);
if(x < ) x += pt;
a *= x, a %= pt;
return a * power(p, pcnt) % pt;
}
const typec PTMAX = ;
typec facmod[PTMAX];
void initFacMod(typec p, typec t = )
{
typec pt = power(p, t);
facmod[] = % pt;
for(int i = ; i < pt; i++)
{
if(i % p) facmod[i] = facmod[i - ] * i % pt;
else facmod[i] = facmod[i - ];
}
}
typec factorialMod(typec n, typec &pcnt, typec p, typec t = )
{
typec pt = power(p, t), res = ;
typec stepCnt = ;
while(n)
{
res *= facmod[n % pt], res %= pt;
stepCnt += n /pt, n /= p, pcnt += n;
}
res *= powerMod(facmod[pt - ], stepCnt, pt);
return res %= pt;
}
typec combinationModPtFac(typec n, typec k, typec p, typec t = )
{
if(k > n || p == ) return ;
if(n - k < k) k = n - k;
typec pt = power(p, t), pcnt = , pmcnt = ;
if(k < pt) return combinationModPt(n, k, p, t);
initFacMod(p, t);
typec a = factorialMod(n, pcnt, p, t);
typec b = factorialMod(k, pmcnt, p, t);
b *= b, pmcnt <<= , b %= pt;
typec tmp = k + ;
while(tmp % p == ) tmp /= p, pmcnt++;
b *= tmp % pt, b %= pt;
pcnt -= pmcnt;
if(pcnt >= t) return ;
a *= inverse(b, p, t), a %= pt;
return a * power(p, pcnt) % pt;
}
typec combinationModFac(typec n, typec k, typec m)
{
getFactors(m);
typec a, b, p, q;
for(int i = ; i < facCnt; i++)
{
if(!i) a = combinationModPtFac(n, k, factor[i][], factor[i][]), p = factor[i][];
else b = combinationModPtFac(n, k, factor[i][], factor[i][]), q = factor[i][];
if(!i) continue;
a = linearCongruence(a, b, p, q), p *= q;
}
return a;
}
int main()
{
getPrime();
typec n, k;
while(scanf("%d %d", &n, &k) != EOF)
printf("%d\n", combinationModFac( * (n-), n-, k));
return ;
}
HUNAN 11562 The Triangle Division of the Convex Polygon(大卡特兰数)的更多相关文章
- HOJ 13101 The Triangle Division of the Convex Polygon(数论求卡特兰数(模不为素数))
The Triangle Division of the Convex Polygon 题意:求 n 凸多边形可以有多少种方法分解成不相交的三角形,最后值模 m. 思路:卡特兰数的例子,只是模 m 让 ...
- HNU 13101 The Triangle Division of the Convex Polygon 组合数的因式分解求法
题意: 求第n-2个Catalan数 模上 m. 思路: Catalan数公式: Catalan[n] = C(n, 2n)/(n+1) = (2n)!/[(n+1)!n!] 因为m是在输入中给的,所 ...
- [LeetCode] Convex Polygon 凸多边形
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- Leetcode: Convex Polygon
Given a list of points that form a polygon when joined sequentially, find if this polygon is convex ...
- ACM训练联盟周赛 G. Teemo's convex polygon
65536K Teemo is very interested in convex polygon. There is a convex n-sides polygon, and Teemo co ...
- 【LeetCode】469. Convex Polygon 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 计算向量夹角 日期 题目地址:https://leet ...
- HDU 5914 Triangle(打表——斐波那契数的应用)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5914 Problem Description Mr. Frog has n sticks, whos ...
- HDU 4195 Regular Convex Polygon
思路:三角形的圆心角可以整除(2*pi)/n #include<cstdio> #include<cstring> #include<iostream> #incl ...
- POJ 3410 Split convex polygon(凸包)
题意是逆时针方向给你两个多边形,问你这两个多边形通过旋转和平移能否拼成一个凸包. 首先可以想到的便是枚举边,肯定是有一对长度相同的边贴合,那么我们就可以n2枚举所有边对,接下来就是旋转点对,那么假设多 ...
随机推荐
- BestCoder Round#15 1001-Love
http://acm.hdu.edu.cn/showproblem.php?pid=5082 Love Time Limit: 2000/1000 MS (Java/Others) Memory ...
- Oracle 回顾
Oracle 函数 日期函数: 1.sysdate--查询当前日期 select sysdate from dual; --查询当前日期 2.months_between--返回两个日期之间的月份差 ...
- [JOYOI] 1035 棋盘覆盖
题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多 ...
- 【Java_多线程并发编程】基础篇—Thread类中start()和run()方法的区别
1. start() 和 run()的区别说明 start()方法: 它会启动一个新线程,并将其添加到线程池中,待其获得CPU资源时会执行run()方法,start()不能被重复调用. run()方法 ...
- logging模块,程序日志模板
6.11自我总结 1.logging模块 用于程序的运行日志 1.初级 #首先程序运行分会出现5中情况 1.logging.info('info') #程序正常运行级别为10 2.logging.de ...
- django第三天(路由基础和路由分配)
路由基础 url(正则路径,视图函数地址,默认关键字参数,路由别名) 路由由上而下匹配, ""可以匹配任意路由 "^$"来匹配"/" url ...
- spring mvc3 配置<mvc:resources/> @Controller失效
因为配置了:<mvc:resources location=" " mapping="" /> ,@Controller失效访问404 这里还 ...
- H.264编码profile & level控制
背景知识 先科普一下profile&level.(这里讨论最常用的H264) H.264有四种画质级别,分别是baseline, extended, main, high: 1.Baseli ...
- Cypress EZ-USB FX3 DMA模式下的串口通讯
由于公司设备升级后出了问题,需要对USB驱动进行修改,原本使用的是寄存器模式进行UART传输,但是由于FX3寄存器模式会出现长时间延时等待的问题,不得不对其传输模式进行修改.虽然赛普拉斯的EZ-USB ...
- git commit 含有中文的代码,提示Warnning:Your console font probably doesn't support Unicode.......
git 提交代码是会遇到以下问题, git commit 代码时提示: Warning: Your console font probably doesn't support Unicode. If ...