Codeforces225B - Well-known Numbers
Description
定义\(k\)-bonacci数列\(\{F_n\}\):\(F_i=0 \ (i<k),F_i=1 \ (i=k),F_i=\sum_{j=i-k}^{i-1}F_j\)
给出\(s(s\leq10^9)\)和\(k(k\leq10^9)\),将\(s\)拆成若干个\(k\)-bonacci数之和。
Solution
结论:重复从\(s\)中减掉最大的\(F_i\),一定能使\(s=0\)。
可以用数学归纳法证明。
若对于正整数\(k\),\(\forall s\in [0,F_k-1]\)该结论成立,则\(\forall s\in [F_k,F_{k+1}-1]\),其下最大的\(F_i\)为\(F_k\),而\(s-F_k\in [0,F_{k-1}-1]\),其必然也能按上述方法减至0。
而因为\(k=1\)时该结论成立,所以\(\forall s\)该结论均成立。
Code
//Well-known Numbers
#include <cstdio>
#include <algorithm>
using namespace std;
int const N=1e5+10;
long long f[N];
int n,m,ans[N];
int main()
{
int s,k; scanf("%d%d",&s,&k);
int n; f[1]=1;
for(n=2;f[n-1]<s;n++)
for(int j=max(1,n-k);j<=n-1;j++) f[n]+=f[j];
int m=0;
for(int i=n-1;i>=1&&s;i--) if(f[i]<=s) ans[++m]=f[i],s-=f[i];
if(m<2) ans[++m]=0;
printf("%d\n",m);
for(int i=1;i<=m;i++) printf("%d ",ans[i]);
puts("");
return 0;
}
P.S.
看标签猜结论系列binary search
greedy
number theory
。不过根本不需要binary search
啊!
Codeforces225B - Well-known Numbers的更多相关文章
- Java 位运算2-LeetCode 201 Bitwise AND of Numbers Range
在Java位运算总结-leetcode题目博文中总结了Java提供的按位运算操作符,今天又碰到LeetCode中一道按位操作的题目 Given a range [m, n] where 0 <= ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- [LeetCode] Add Two Numbers II 两个数字相加之二
You are given two linked lists representing two non-negative numbers. The most significant digit com ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数
Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Examp ...
- [LeetCode] Bitwise AND of Numbers Range 数字范围位相与
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...
- [LeetCode] Valid Phone Numbers 验证电话号码
Given a text file file.txt that contains list of phone numbers (one per line), write a one liner bas ...
- [LeetCode] Consecutive Numbers 连续的数字
Write a SQL query to find all numbers that appear at least three times consecutively. +----+-----+ | ...
- [LeetCode] Compare Version Numbers 版本比较
Compare two version numbers version1 and version1.If version1 > version2 return 1, if version1 &l ...
随机推荐
- P1720 月落乌啼算钱
题目背景 (本道题目木有以藏歌曲……不用猜了……) <爱与愁的故事第一弹·heartache>最终章. 吃完pizza,月落乌啼知道超出自己的预算了.为了不在爱与愁大神面前献丑,只好还是硬 ...
- android开发学习 ------- Retrofit+Rxjava+MVP网络请求的实例
http://www.jianshu.com/p/7b839b7c5884 推荐 ,照着这个敲完 , 测试成功 , 推荐大家都去看一下 . 下面贴一下我照着这个敲完的代码: Book实体类 - 用 ...
- AJPFX关于表结构的相关语句
//表结构的相关语句==================================== 建表语句: create table 表名( ...
- P3368 【模板】树状数组 2 单点查询与区间修改
题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数数加上x 2.求出某一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别表示该数列数字的个数和操作的总个数. ...
- iOS 开发App捕获异常, 反馈给服务器, 提高用户体验
在我们开发的app中, 不可避免的, 有时候用户使用软件会崩溃. 我们就需要捕获异常, 可以在入口类中加入相应的代码, 可以在每次用户打开程序的时候, 检查一下沙盒中是否有崩溃日志, 如果有, 可以 ...
- 修改JRE system library
MyEclipse 默认的情况下JRE system library 是:MyEclipse 的,如何修改工程中的JRE system library呢?步骤如下: 1.选择工程->Proper ...
- Halcon学习笔记1
转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...
- Android(java)学习笔记160:开发一个多界面的应用程序之清单文件
清单文件的重要参数: <intent-filter> 代表的应用程序的入口界面 <action android:name=&quo ...
- (三)docker 的启动,重启,关闭命令
docker启动命令,docker重启命令,docker关闭命令 启动 systemctl start docker 守护进程重启 sudo systemctl daemon-reload 重 ...
- 几个有关整数的证明(from信息安全数学基础的作业)
1. 设m,n为正整数,m为奇数,求证2m-1和2n+1互素 反证法:假设d=(2m-1,2n+1)≥2,则存在x,y∈z,2m=dx+1,和2n=dy-1 则存在u,v∈z,2mn=du+1,2nm ...