bzoj 1867: [Noi1999]钉子和小球【dp】
设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好
主要是要手写分数比较麻烦
#include<iostream>
#include<cstdio>
using namespace std;
const int N=55;
int n,m;
char a[N][N];
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
struct fs
{
long long x,y;
fs(long long X=0,long long Y=1)
{
x=X,y=Y;
}
fs operator + (const fs &a) const
{
long long d=gcd(a.y,y),l=a.y/d*y;
fs b=fs(l/y*x+l/a.y*a.x,l);
long long g=gcd(b.x,b.y);
return fs(b.x/g,b.y/g);
}
fs operator * (const fs &a) const
{
fs b=fs(x*a.x,y*a.y);
long long g=gcd(b.x,b.y);
return fs(b.x/g,b.y/g);
}
}f[N][N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
a[i][j]=getchar();
while(a[i][j]!='*'&&a[i][j]!='.')
a[i][j]=getchar();
}
f[1][1]=fs(1,1);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
if(a[i][j]=='*')
{
f[i+1][j]=f[i+1][j]+f[i][j]*fs(1,2);
f[i+1][j+1]=f[i+1][j+1]+f[i][j]*fs(1,2);
}
else
f[i+2][j+1]=f[i+2][j+1]+f[i][j];
}
printf("%lld/%lld\n",f[n+1][m+1].x,f[n+1][m+1].y);
return 0;
}
/*
5 2
*
*.
***
*.**
*****
*/
bzoj 1867: [Noi1999]钉子和小球【dp】的更多相关文章
- BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- bzoj1867: [Noi1999]钉子和小球(DP)
一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- bzoj 2037: [Sdoi2008]Sue的小球——dp
Description Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩 ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
随机推荐
- 拥抱变革(More Fearless Change)
今天从大敏捷群中了解到Tid2017的一个讲演,一位敏捷教练,组织变革的专著的作者Linda的讲演. <More Fearless Change-Strategy for Making Your ...
- jQuery_DOM学习之------包裹元素的方法
1..wrap( ):在集合中匹配的每个元素周围包裹一个HTML结构 简单的看一段代码: <span>连接文字</span> 给span元素增加一个a包裹 $('span'). ...
- CentOS 7 & Chinese Fonts bug
CentOS 7 & Chinese Fonts bug # check $ yum grouplist $ yum grouplist hidden # root $ yum groupin ...
- Python模块:time、datetime、random、os、sys、optparse
time模块的方法: 时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量. struct_time时间元组,共有九个元素组.如下图: time.localtime([secs]): ...
- 用jquery校验radio单选按钮(原创)
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...
- POJ 2411_Mondriaan's Dream
题意: 用1*2和2*1的方块将给定长宽的矩形填满.问有多少种放法,对称的算两种. 分析: 状态压缩dp 首先用0表示前一行没有竖块占用这个位置,而1表示该位置和他上方的位置放了一个竖块,从而压缩状态 ...
- 创建Django项目(二)——数据库配置
2013-08-05 20:53:44| 1.数据库配置 举例是用MySQL数据库,首先在settings文件中做配置,如下: DATABASES = { ' ...
- JSP处理XML数据
以下内容引用自http://wiki.jikexueyuan.com/project/jsp/xml-data.html: 当通过HTTP发送XML数据时,使用JSP处理传入和传出的XML文件是有意义 ...
- mysql计算两个日期之间的天数
MYSQL自带函数计算给定的两个日期的间隔天数 有两个途径可获得 1.利用TO_DAYS函数 select to_days(now()) - to_days('20120512') 2 ...
- delphi的一些语法知识 以及参数传递问题,按引用方式传递参数,按值方式传递参数
//delphi中exit,abort,break,continue 的区别 exit: 退出函数体abort: 遇到异常,安静处理,就是不显示不提示break: 退出当前循环体,包括for ,whi ...