设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好

主要是要手写分数比较麻烦

#include<iostream>
#include<cstdio>
using namespace std;
const int N=55;
int n,m;
char a[N][N];
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
struct fs
{
long long x,y;
fs(long long X=0,long long Y=1)
{
x=X,y=Y;
}
fs operator + (const fs &a) const
{
long long d=gcd(a.y,y),l=a.y/d*y;
fs b=fs(l/y*x+l/a.y*a.x,l);
long long g=gcd(b.x,b.y);
return fs(b.x/g,b.y/g);
}
fs operator * (const fs &a) const
{
fs b=fs(x*a.x,y*a.y);
long long g=gcd(b.x,b.y);
return fs(b.x/g,b.y/g);
}
}f[N][N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
a[i][j]=getchar();
while(a[i][j]!='*'&&a[i][j]!='.')
a[i][j]=getchar();
}
f[1][1]=fs(1,1);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
{
if(a[i][j]=='*')
{
f[i+1][j]=f[i+1][j]+f[i][j]*fs(1,2);
f[i+1][j+1]=f[i+1][j+1]+f[i][j]*fs(1,2);
}
else
f[i+2][j+1]=f[i+2][j+1]+f[i][j];
}
printf("%lld/%lld\n",f[n+1][m+1].x,f[n+1][m+1].y);
return 0;
}
/*
5 2
*
*.
***
*.**
*****
*/

bzoj 1867: [Noi1999]钉子和小球【dp】的更多相关文章

  1. BZOJ 1867 [Noi1999]钉子和小球 DP

    想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...

  2. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  3. 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)

    传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...

  4. bzoj1867: [Noi1999]钉子和小球(DP)

    一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...

  5. POJ1189钉子和小球(DP)

    对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...

  6. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  7. bzoj 2037: [Sdoi2008]Sue的小球——dp

    Description Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩 ...

  8. POJ-1189 钉子和小球(动态规划)

    钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...

  9. [BZOJ 4033] [HAOI2015] T1 【树形DP】

    题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...

随机推荐

  1. MySQL查看表结构及查看建表语句

    查看表结构:desc 表名 mysql> use recommend; Database changed mysql> desc user; +--------------+------- ...

  2. [ C语言版 ] 数独计算器 [ 搜索剪枝法 ]

    [原创]转载请注明出处. [浙江大学 程序设计专题] 使用方法:按提示输入方式为9*9的矩阵,0表示未知数. 为解决这一问题,我们也尝试了两种方法,准确的说,是第一种方法太慢了,我们对它进行了优化. ...

  3. 【ZJOI2017 Round1练习&BZOJ5350】D5T1 masodik(DP,斜率优化)

    题意:你要从(0,0)点走到(n,m), 每次只能往 x 轴或者 y 轴正方向移动一个单位距离.从(i,j)移动到(i,j+1)的代价为 ri,从(i,j)移动到(i+1,j)的代价为 cj. 求最小 ...

  4. csu - 1537: Miscalculation (模拟题)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1537 因为给出的式子是必定合法的,只要用两个栈分别保存符号和数字.算出答案后和从左至右算的答案比对 ...

  5. CSU - 1333 1333: Funny Car Racing(spfa)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1333 这题多了一个限制条件是每一条路都会规律的开放a时间关闭b时间,车子必须在开放的时候进入,在关 ...

  6. Jquery那些事

    Jquery选择器介绍: 我们可以通过Jquery选择器从网页文档中找到我们需要的DOM节点: 主要还时看文档!! (1)基本选择器 属性id    类别class       文档标签 (2)属性选 ...

  7. c++ stl 使用汇总(string,vector,map,set)

    1.string 1>substr(),截取字串的方法.返回一个从指定位置开始,并具有指定长度的子字符串.参数 start(必选),所需的子字符串的起始位置.字符串中第一个字符的索引为 0.le ...

  8. Ubuntu 16.04硬盘有坏道,开机显示blk_update_request:I/0 error

    可以尝试以下方式解决: 1.检查坏道(效果明显,但是比较慢,检查出来并没有什么用,只是知道有坏块) sudo badblocks -s -v -o /root/bb.log /dev/sda1 2.快 ...

  9. redhat 6 配置 yum 源

    1.删除redhat原有的yum rpm -aq|grep yum|xargs rpm -e --nodeps 2.下载yum安装文件 注意,如果下载时找不到文件,就登录到:http://mirror ...

  10. 装机、做系统必备:秒懂MBR和GPT分区表

    从Intel 6系列主板之后,就开始提供UEFI BIOS支持,正式支持GPT硬盘分区表,一举取代了此前的MBR分区表格式,不过为了保持对老平台的兼容,微软即使最新的Windows 10系统也继续提供 ...