洛谷 P3807 【模板】卢卡斯定理
题目背景
这是一道模板题。
题目描述
给定n,m,p(1\le n,m,p\le 10^51≤n,m,p≤105)
求 C_{n+m}^{m}\ mod\ pCn+mm mod p
保证P为prime
C表示组合数。
一个测试点内包含多组数据。
输入输出格式
输入格式:
第一行一个整数T(T\le 10T≤10),表示数据组数
第二行开始共T行,每行三个数n m p,意义如上
输出格式:
共T行,每行一个整数表示答案。
输入输出样例
2
1 2 5
2 1 5
3
3
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100000
using namespace std;
int T,p;
long long sum[MAXN];
long long pow(long long a,long long x,long long p){
long long s=%p;
for(;x;x>>=){
if(x&) s=s*a%p;
a=a*a%p;
}
return s;
}
long long C(long long n,long long m){
if(m>n) return ;
return sum[n]*pow(sum[m],p-,p)%p*pow(sum[n-m],p-,p)%p;
}
long long Lucas(long long n,long long m){
if(m==) return ;
return C(n%p,m%p)*Lucas(n/p,m/p)%p;
}
int main(){
scanf("%d",&T);
while(T--){
int n,m;
scanf("%d%d%d",&n,&m,&p);
sum[]=;
for(int i=;i<=p;i++) sum[i]=sum[i-]*i%p;
cout<<Lucas(n+m,n)<<endl;
}
}
洛谷 P3807 【模板】卢卡斯定理的更多相关文章
- 洛谷.3807.[模板]卢卡斯定理(Lucas)
题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...
- 【数论】卢卡斯定理模板 洛谷P3807
[数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷——P3807 【模板】卢卡斯定理
P3807 [模板]卢卡斯定理 洛谷智推模板题,qwq,还是太弱啦,组合数基础模板题还没做过... 给定n,m,p($1\le n,m,p\le 10^5$) 求 $C_{n+m}^{m}\ mod\ ...
- 【刷题】洛谷 P3807 【模板】卢卡斯定理
题目背景 这是一道模板题. 题目描述 给定\(n,m,p( 1\le n,m,p\le 10^5)\) 求 \(C_{n+m}^{m}\ mod\ p\) 保证 \(p\) 为prime \(C\) ...
- 【洛谷P3807】(模板)卢卡斯定理
卢卡斯定理 把n写成p进制a[n]a[n-1][n-2]…a[0],把m写成p进制b[n]b[n-1][n-2]…b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])* ...
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- 和为S
2518 和为S 2 秒 262,144 KB 10 分 2 级题 小b有一个01序列A,她想知道A有多少个非空连续子序列和为S. 你能帮帮她吗? 收起 输入 第一行输入一个数n,表示A的长度 ...
- L_01 网络字节顺序
(1)计算机在存储多字节数据时存在大端字节顺序和小端字节顺序两种方式. 大端:高位字节排放在内存的低地址端(即该值的起始地址),低位字节排放在内存的高地址端. 小端:低位字节排放在内存的低地址端(即该 ...
- luogu P2241 统计方形
题目背景 1997年普及组第一题 题目描述 有一个n*m方格的棋盘,求其方格包含多少正方形.长方形 输入输出格式 输入格式: n,m因为原来数据太弱,现规定m小于等于5000,n小于等于5000(原来 ...
- 洛谷P1035 级数求和
#include <iostream> using namespace std; int main(){ long k,i; cin >> k; double s=0.0; ; ...
- turtle安装问题
原文来源:https://blog.csdn.net/liudongdong19/article/details/81283942 本人python版本为:Python 3.6.5 在安装turtle ...
- ssh服务介绍
基本介绍 ssh:安全的远程登陆 要有客户端与服务器端,客户端主动链接服务端,那么服务端地址是不能变的. socket:套接字 标识应用唯一的地址 tcp/udp port端口号 cat /etc/s ...
- elementary 5.0 安装 chrome
sudo apt install google-chrome-stable wget -q -O - https://dl.google.com/linux/linux_signing_key.pub ...
- 如何用纯 CSS 创作文本滑动特效的 UI 界面
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QrxxaW 可交互视频教 ...
- SSM调用数据库存储过程
ServiceImpl中: Map<String,Object> map=new HashMap<String,Object>(); map.put("bid&quo ...
- LeetCode07--整数反转
''' 给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 ...