A. Primes or Palindromes?
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to
convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes
no larger than nrub(n) —
the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n,
such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq,
the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Sample test(s)
input
1 1
output
40
input
1 42
output
1
input
6 4
output
172

能够发现不可能无解,极限情况n不大

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+llabs(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
bool is_prime(int x)
{
if (x==1) return 0;
Fork(i,2,sqrt(x))
{
if (x%i==0) return 0;
}
return 1;
}
const int MAXN =10000000;
int P[MAXN],siz=0,b[MAXN]={0};
void make_prime(int n)
{
Fork(i,2,n)
{
if (!b[i])
{
P[++siz]=i;
}
For(j,siz)
{
if (P[j]*i>n) break;
b[P[j]*i]=1;
if (i%P[j]==0) break;
}
}
}
bool is_pal(int x)
{
char s[10];
sprintf(s,"%d",x);
int p=0,q=strlen(s)-1;
while(p<q) if (s[p]!=s[q]) return 0;else ++p,--q;
return 1;
} bool B[MAXN]={0};
bool make_pal(int n)
{
char s[20];
For(i,10000)
{ sprintf(s,"%d",i);
int m=strlen(s);
int p=m-1;
for(int j=m;p>-1;j++,p--) s[j]=s[p]; int x;
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; for(int j=m;j<=2*m-1;j++) s[j]=s[j+1];
sscanf(s,"%d",&x);
if (x<=n) B[x]=1; }
} int main()
{
// freopen("A.in","r",stdin);
// freopen(".out","w",stdout);
int p,q;
cin>>p>>q;
make_prime(MAXN-1);
make_pal(MAXN-1);
int x1=0,x2=0,n=MAXN-1,ans=1,t=1;
For(i,n)
{
if (i==P[t]) x1++,t++;
if (B[i]) x2++;
if ((ll)(x1)*q<=(ll)(x2)*p) ans=i;
}
cout<<ans<<endl;
return 0;
}

CF 568A(Primes or Palindromes?-暴力推断)的更多相关文章

  1. Codeforces Round #315 (Div. 1) A. Primes or Palindromes? 暴力

    A. Primes or Palindromes?Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3261 ...

  2. Codeforces Round #315 (Div. 2) C. Primes or Palindromes? 暴力

    C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Round #315 (Div. 2C) 568A Primes or Palindromes? 素数打表+暴力

    题目:Click here 题意:π(n)表示不大于n的素数个数,rub(n)表示不大于n的回文数个数,求最大n,满足π(n) ≤ A·rub(n).A=p/q; 分析:由于这个题A是给定范围的,所以 ...

  4. codeforces 568a//Primes or Palindromes?// Codeforces Round #315 (Div. 1)

    题意:求使pi(n)*q<=rub(n)*p成立的最大的n. 先收集所有的质数和回文数.质数好搜集.回文数奇回文就0-9的数字,然后在头尾添加一个数.在x前后加a,就是x*10+a+a*pow( ...

  5. codeforces 569C C. Primes or Palindromes?(素数筛+dp)

    题目链接: C. Primes or Palindromes? time limit per test 3 seconds memory limit per test 256 megabytes in ...

  6. Uva-oj Palindromes 暴力

     Palindromes Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Statu ...

  7. 【34.88%】【codeforces 569C】Primes or Palindromes?

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. Codeforces Round #315 (Div. 2)——C. Primes or Palindromes?

    这道题居然是一个大暴力... 题意: π(n):小于等于n的数中素数的个数 rub(n) :小于等于n的数中属于回文数的个数 然后给你两个数p,q,当中A=p/q. 然后要你找到对于给定的A.找到使得 ...

  9. C. Primes or Palindromes?

    prime numbers non greater than n is about . We can also found the amount of palindrome numbers with ...

随机推荐

  1. google F12

    谷歌浏览器(Google Chrome)开发调试详细介绍 博客分类: 前端 浏览器chromegoogle调试开发  很多Web前台开发者都喜欢这种浏览器自带的开发者工具,这对前台设计.代码调试很大帮 ...

  2. redux学习总结

    redux学习总结 *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !imp ...

  3. 七、docker基本命令

    Docker 基本命令 docker的基本命令 docker version :查看docker的版本号,包括客户端.服务端.依赖的Go等 [root@centos7 ~]# docker versi ...

  4. [uiautomator篇] 找父亲节点和其他兄弟节点

    https://testerhome.com/topics/1250 Appium [已解决] UiSelector 如何根据节点定位到父节点 / 兄弟节点? liqing380 · 发布于 2014 ...

  5. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  6. SPOJ QTREE Query on a tree V ——动态点分治

    [题目分析] QTREE4的弱化版本 建立出分治树,每个节点的堆表示到改点的最近白点距离. 然后分治树上一直向上,取min即可. 正确性显然,不用担心出现在同一子树的情况(不会是最优解),请自行脑补. ...

  7. [luoguP1053] 篝火晚会(贪心 + 乱搞)

    传送门 假设第一个位置是1,那么枚举它的左右两边是谁,有两种情况,然后可以递推求出序列. 然后可以贪心,两个序列有多少个不同的数,答案就是多少,具体为啥,yy一下即可 然后就是判断递推求出的序列和目标 ...

  8. VB6 post图片

    在VBA中怎样用XMLhttp 模拟http上传二进制文件? https://www.zhihu.com/question/40974557 作者:付杨 链接:https://www.zhihu.co ...

  9. 【noip】noip201503求和(题解可能不完美,但绝对详细)

    3. 求和 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 题目描述   一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n.每个格子 ...

  10. 【bzoj1299】[LLH邀请赛]巧克力棒 博弈+模拟

    Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. 他们以最佳策略一共进行了10轮 ...