Problem Description


Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

Input


The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

Output


You should output the answer modulo p.

Sample Input


2
1 2 5
2 1 5

Sample Output


3
3

Hint


For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.

The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:

put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

Source


2009 Multi-University Training Contest 13 - Host by HIT

题解

求C(n+m),

Lucas定理:

B是非负整数,p是质数。AB写成p进制:\(A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]\)。

则组合数\(C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p\)同余

即:$Lucas(n,m,p)=c(n%p,m%p)\times Lucas(n/p,m/p,p) $

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=100005;
ll fac[N];
void Init(int p){
fac[0]=1LL;
for(int i=1;i<=p;i++) fac[i]=fac[i-1]*i%p;
}
ll qpow(ll a,ll b,ll p){
ll ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1) ans=(ans*a)%p;
return ans;
}
ll C(ll n,ll m,ll p){
if(n<m) return 0;
return fac[n]*qpow(fac[n-m],p-2,p)%p*qpow(fac[m],p-2,p)%p;
}
ll lucas(int n,int m,int p){
if(m==0) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
ll Lucas(ll n,ll m,ll p) {
ll ret=1;
while(n&&m){
ll a=n%p,b=m%p;
if(a<b) return 0;
ret = (ret*fac[a]*qpow(fac[b]*fac[a-b]%p, p-2, p)) % p;
n/=p;
m/=p;
}
return ret;
}
int main(){
for(int T=read();T;T--){
int n=read(),m=read(),p=read();
Init(p);
printf("%lld\n",lucas(n+m,m,p));
}
return 0;
}

【HDU 3037】Saving Beans(卢卡斯模板)的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  8. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  9. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  10. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. macOS 设置Root密码

    用管理员帐号进入Terminal: 1) 输入:sudo passwd root ,回车: 2) 输入新的root密码: 3) 输入:su : 4) 输入新密码: 这样就进入到root帐号了.

  2. 自适应的两端对齐:text-align:justify

    <!DOCTYPE HTML> <html> <head> <title>文本两端对齐 by hongchenok</title> < ...

  3. bzoj 5019 [Snoi2017]遗失的答案

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5019 题解 如果L不是G的倍数 答案为0 下面考虑G|L的情况 将G,L质因数分解 设$L= ...

  4. CentOS 安装图形化界面方法

    登录系统,使用yum 安装 #yum groupinstall 'X Window System'  -y 安装GNOME桌面环境 #yum groupinstall  'GNOME Desktop ...

  5. ["1", "2", "3"].map(parseInt)

    为什么["1", "2", "3"].map(parseInt) 为 1,NaN,NaN; parseInt() parseInt() 函数 ...

  6. objectbox基础

    objectbox基础 参考链接 官网地址 http://objectbox.io github地址 https://github.com/objectbox/objectbox-java https ...

  7. 生产线上的Nginx如何添加未编译安装模块

    正在生产线上跑着web前端是nginx+tomcat,现在有这样一个需求,需要对网站的单品页面和列表页设置缓存,不同的页面设置不同的缓存,但是由于开始没有安装ngx_cache_purge这个模块,现 ...

  8. 第一次提交代码到github时经常遇到的问题

    最近两年在OpenStack方面做了一些工作,写了一些实验性的plugin. 本着Open Source的共享精神,想尝试提交到github,以便他人能下载使用. 当你注册完github帐号之后,点击 ...

  9. 洛谷 P1910 L国的战斗之间谍(水题日常)

    题目背景 L国即将与I国发动战争!! 题目描述 俗话说的好:“知己知彼,百战不殆”.L国的指挥官想派出间谍前往I国,于是,选人工作就落到了你身上. 你现在有N个人选,每个人都有这样一些数据:A(能得到 ...

  10. HashMap和HashTable的理解与区别

    Hashtable是java一开始发布时就提供的键值映射的数据结构,而HashMap产生于JDK1.2.虽然Hashtable比HashMap出现的早一些,但是现在Hashtable基本上已经被弃用了 ...