Problem Description


Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

Input


The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

Output


You should output the answer modulo p.

Sample Input


2
1 2 5
2 1 5

Sample Output


3
3

Hint


For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.

The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:

put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

Source


2009 Multi-University Training Contest 13 - Host by HIT

题解

求C(n+m),

Lucas定理:

B是非负整数,p是质数。AB写成p进制:\(A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]\)。

则组合数\(C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p\)同余

即:$Lucas(n,m,p)=c(n%p,m%p)\times Lucas(n/p,m/p,p) $

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,x,n) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
ll read(){
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a){
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=100005;
ll fac[N];
void Init(int p){
fac[0]=1LL;
for(int i=1;i<=p;i++) fac[i]=fac[i-1]*i%p;
}
ll qpow(ll a,ll b,ll p){
ll ans=1;
for(int i=b;i;i>>=1,a=(a*a)%p)
if(i&1) ans=(ans*a)%p;
return ans;
}
ll C(ll n,ll m,ll p){
if(n<m) return 0;
return fac[n]*qpow(fac[n-m],p-2,p)%p*qpow(fac[m],p-2,p)%p;
}
ll lucas(int n,int m,int p){
if(m==0) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
ll Lucas(ll n,ll m,ll p) {
ll ret=1;
while(n&&m){
ll a=n%p,b=m%p;
if(a<b) return 0;
ret = (ret*fac[a]*qpow(fac[b]*fac[a-b]%p, p-2, p)) % p;
n/=p;
m/=p;
}
return ret;
}
int main(){
for(int T=read();T;T--){
int n=read(),m=read(),p=read();
Init(p);
printf("%lld\n",lucas(n+m,m,p));
}
return 0;
}

【HDU 3037】Saving Beans(卢卡斯模板)的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  5. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  8. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  9. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  10. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. Django Views: Dynamic Content

    世味年来薄似纱,谁令骑马客京华. 小楼一夜听春雨,深巷明朝卖杏花. 矮纸斜行闲作草,晴窗细乳戏分茶. 素衣莫起风尘叹,犹及清明可到家. Your Second View: Dynamic Conten ...

  2. echartShow

    echartShow 基于echart和bootstrap的大屏展示 以下是已经运用的成品图片.有一些数据运用的是json文件,实际成品中运用的是真实数据,除了公司内网访问不了.  需注意的地方 图表 ...

  3. SpringBoot | contrller的使用

    @Controller 处理http请求 @RestController Spring4之后新加的注解,原来返回json需要@ResponseBody配合@Controller @RequestMap ...

  4. AtCoder Grand Contest 016 E - Poor Turkeys

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_e 题目大意: 有\(N\)只火鸡,现有\(M\)个人,每个人指定了两只火鸡\(x,y\),每 ...

  5. jmeter(二十二)jmeter测试Java请求

    目的:对Java程序进行测试 目录 一.核心步骤 二.实例 三.JMeter Java Sampler介绍 四.自带Java Request Sampler 一.核心步骤 1.创建一个Java工程: ...

  6. P2614 计算器弹琴

    题目描述 总所周知,计算器可以拿来干很多它本不应该干的事情,比如写作文.(参看洛谷P2549) 小A发现了一个计算器的另一个隐藏功能——弹琴. http://www.bilibili.com/vide ...

  7. 【ADO.NET】 基础 (SQL Server)

    一.Web.config配置 <connectionStrings> <add name="constr_name" connectionString=" ...

  8. net MVC 四种基本 Filter

    四种基本 Filter 概述 MVC框架支持的Filter可以归为四类,每一类都可以对处理请求的不同时间点引入额外的逻辑处理.这四类Filter如下表:   使用内置的Authorization Fi ...

  9. C#局部类型partial在定义实体类Model中的应用

    以前一直用继承类的方法,原来还可以这样 //例如:定义一个Person的实体类,用户ID(PersonId),姓名(Name),性别(Sex),年龄(Age),地址(Address),联系方式(Tel ...

  10. spring boot 的redis 之初理解

    项目到末尾了快, 这几天安排我结合业务场景给项目加上redis 缓存, 我接到这个任务也是懵逼了一会儿: 问了一句让我自己先想办法,没办法硬着头皮查吧, 要不不得不说spring boot 还是好用, ...