Couple Cover, a wildly popular luck-based game, is about to begin! Two players must work together to construct a rectangle. A bag with nballs, each with an integer written on it, is placed on the table. The first player reaches in and grabs a ball randomly (all balls have equal probability of being chosen) — the number written on this ball is the rectangle's width in meters. This ball is not returned to the bag, and the second player reaches into the bag and grabs another ball — the number written on this ball is the rectangle's height in meters. If the area of the rectangle is greater than or equal some threshold p square meters, the players win. Otherwise, they lose.

The organizers of the game are trying to select an appropriate value for p so that the probability of a couple winning is not too high and not too low, but they are slow at counting, so they have hired you to answer some questions for them. You are given a list of the numbers written on the balls, the organizers would like to know how many winning pairs of balls exist for different values of p. Note that two pairs are different if either the first or the second ball is different between the two in pair, and two different balls with the same number are considered different.

Input

The input begins with a single positive integer n in its own line (1 ≤ n ≤ 106).

The second line contains n positive integers — the i-th number in this line is equal to ai (1 ≤ ai ≤ 3·106), the number written on the i-th ball.

The next line contains an integer m (1 ≤ m ≤ 106), the number of questions you are being asked.

Then, the following line contains m positive integers — the j-th number in this line is equal to the value of p (1 ≤ p ≤ 3·106) in the j-th question you are being asked.

Output

For each question, print the number of winning pairs of balls that exist for the given value of p in the separate line.

Examples
input
5
4 2 6 1 3
4
1 3 5 8
output
20
18
14
10
input
2
5 6
2
30 31
output
2
0 思路:可以先预处理出乘积小于某个数的方案数。先用一个数组统计每个数字出现的次数,再枚举最大数以内的每个数,算出每个乘积,用乘法原理和加法原理做出可以得到该乘积的方案数,最后求出前缀为小于等于这个数的方案数。询问时只需总数减去小于这个数的方案数即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int n,a[],tot[];
long long f[];
int main()
{
scanf("%d",&n);
int i,j;
memset(tot,,sizeof(tot));
int mx=;
for (i=;i<=n;i++) scanf("%d",&a[i]),tot[a[i]]++,mx=max(mx,a[i]);
//cout<<mx<<endl;
for (i=;i<=mx;i++)
for (j=;j<=mx;j++)
{
if (1ll*i*j>) break;
if (i!=j) f[i*j]+=1ll*tot[i]*tot[j];
else f[i*j]+=max(1ll*tot[i]*(tot[i]-),0ll);
}
for (i=;i<=;i++) f[i]+=f[i-];
//cout<<"hhhhhhhh"<<endl;
int q;
scanf("%d",&q);
while (q--)
{
int x;
scanf("%d",&x);
printf("%lld\n",1ll*n*(n-)-f[x-]);
}
return ;
}
 

codeforces 691F(组合数计算)的更多相关文章

  1. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  2. 纪中集训2020.02.05【NOIP提高组】模拟B 组总结反思——【佛山市选2010】组合数计算,生成字符串 PPMM

    目录 JZOJ2290. [佛山市选2010]组合数计算 比赛时 之后 JZOJ2291. [佛山市选2010]生成字符串 比赛时 之后 JZOJ2292. PPMM 比赛时 之后 JZOJ2290. ...

  3. [ An Ac a Day ^_^ ] CodeForces 691F Couple Cover 花式暴力

    Couple Cover Time Limit: 3000MS   Memory Limit: 524288KB   64bit IO Format: %I64d & %I64u Descri ...

  4. 组合数计算-java

    排列组合是计算应用经常使用的算法,通常使用递归的方式计算,但是由于n!的过于大,暴力计算很不明智.一般使用以下两种方式计算. 一,递归的思想:假设m中取n个数计算排列组合数,表示为comb(m,n). ...

  5. Gym100947E || codeforces 559c 组合数取模

    E - Qwerty78 Trip Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  6. codeforces 691F 暴力

    传送门:https://codeforces.com/contest/691/problem/F 题意:给你n个数和q次询问,每次询问问你有多少对ai,aj满足ai*aj>=q[i],注意 a* ...

  7. Educational Codeforces Round 14 - F (codeforces 691F)

    题目链接:http://codeforces.com/problemset/problem/691/F 题目大意:给定n个数,再给m个询问,每个询问给一个p,求n个数中有多少对数的乘积≥p 数据范围: ...

  8. [leetcode] 题型整理之数字加减乘除乘方开根号组合数计算取余

    需要注意overflow,特别是Integer.MIN_VALUE这个数字. 需要掌握二分法. 不用除法的除法,分而治之的乘方 2. Add Two Numbers You are given two ...

  9. codeforces 691F Couple Cover 暴力

    分析:开一个300w的数组,统计,然后nlogn统计每个值在在序对第一个出现有多少种情况 时间复杂度:O(nlogn) n在3e6数量级 #include<cstdio> #include ...

随机推荐

  1. Laravel环境搭建

    在有了初步认知后,当然就要开始在自己的电脑上搭建Laravel的开发环境了. 系统环境需求 PHP 5.3.7或者更高版本,如果没有系统没有安装PHP环境的,请到下面地址下载:http://cn2.p ...

  2. php安装ionCube

  3. php防止页面刷新代码

    //代理IP直接退出 empty($_SERVER['HTTP_VIA']) or exit('Access Denied'); //防止快速刷新 session_start(); $seconds ...

  4. Microsoft SQL Server学习(二)

    目录 关于数据库的语法: 1.创建数据库 create database 数据库名 on primary (主文件属性(name,filename,size等)) -用逗号隔开次要主要文件和次要文件 ...

  5. 简单探讨弹性布局flex

    css 弹性布局: 盒子模型: box-sizing属性1.content-box 正常的普通的盒子模型用padding和border会使盒子变大:(向外扩张)2.border-box 盒子模型,pa ...

  6. ALTER GROUP - 修改一个用户组

    SYNOPSIS ALTER GROUP groupname ADD USER username [, ... ] ALTER GROUP groupname DROP USER username [ ...

  7. CAD交互绘制文字(com接口)

    在cad设计时,需要绘制文字,用户可以设置设置绘制文字的高度等属性. 主要用到函数说明: _DMxDrawX::DrawText 绘制一个单行文字.详细说明如下: 参数 说明 DOUBLE dPosX ...

  8. org.mybatis.spring.transaction.SpringManagedTransaction - JDBC Connection [********] will not be managed by Spring

    如下图,查看层次是否正确.

  9. 文本框/域文字提示(placeholder)自动显示隐藏jQuery小插件

    // 文本框文本域提示文字的自动显示与隐藏 (function($){ $.fn.textRemindAuto = function(options){ options = options || {} ...

  10. 浅谈FFT(快速博立叶变换)&学习笔记

    0XFF---FFT是啥? FFT是一种DFT的高效算法,称为快速傅立叶变换(fast Fourier transform),它根据离散傅氏变换的奇.偶.虚.实等 特性,对离散傅立叶变换的算法进行改进 ...