POJ 3734_Blocks
题意:
用红绿蓝黄四种颜色对一序列n个方块涂色,求出绿和红色方块数同时为偶数的染色方案数。mod=10007
分析:
dp+矩阵快速幂
首先明确有三种状态:
- 红和绿均为偶数
- 红和绿只有一个为奇数
- 红和绿均为奇数
设前三种方案数分别为ai,bi,ci,则可以得到以下递推式:
再利用矩阵快速幂求解即可。
代码:
#include<cstdio>
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int mod = 10007;
const int N=3;
struct Matrix
{
int row,cal;
ll m[N][N];
Matrix()
{
row=3, cal=3;
m[0][0]=2, m[0][1]=1, m[0][2]=0;
m[1][0]=2, m[1][1]=2, m[1][2]=2;
m[2][0]=0, m[2][1]=1, m[2][2]=2;
}
};
Matrix init(Matrix a, ll t)
{
for(int i = 0; i < a.row; i++)
for(int j = 0; j < a.cal; j++)
a.m[i][j] = t;
return a;
}
Matrix mul(Matrix a,Matrix b)
{
Matrix ans;
ans.row = a.row, ans.cal = b.cal;
ans = init(ans,0);
for(int i = 0; i < a.row; i++)
for(int j = 0; j < b.cal; j++)
for(int k = 0; k < a.cal; k++)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j])%mod;
return ans;
}
ll quick_pow(ll n)
{
Matrix ans, t;
ans.row=1, ans.cal=3;
ans.m[0][0]=1, ans.m[0][1] = 0, ans.m[0][2]=0;
while(n)
{
if(n&1) ans = mul(ans, t);
t = mul(t, t);
n>>=1;
}
return ans.m[0][0];
}
int main (void)
{
int T;scanf("%d",&T);
int n;
while(T--){
scanf("%d",&n);
printf("%d\n",quick_pow(n));
}
return 0;
}
POJ 3734_Blocks的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
- POJ 2739. Sum of Consecutive Prime Numbers
Sum of Consecutive Prime Numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20050 ...
- POJ 2255. Tree Recovery
Tree Recovery Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11939 Accepted: 7493 De ...
- POJ 2752 Seek the Name, Seek the Fame [kmp]
Seek the Name, Seek the Fame Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17898 Ac ...
- poj 2352 Stars 数星星 详解
题目: poj 2352 Stars 数星星 题意:已知n个星星的坐标.每个星星都有一个等级,数值等于坐标系内纵坐标和横坐标皆不大于它的星星的个数.星星的坐标按照纵坐标从小到大的顺序给出,纵坐标相同时 ...
随机推荐
- Android开发中使用数据库时出现java.lang.IllegalStateException: Cannot perform this operation because the connection pool has been closed.
最近在开发一个 App 的时候用到了数据库,可是在使用数据库的时候就出现了一些问题,在我查询表中的一些信息时出现了一下问题: Caused by: java.lang.IllegalStateExce ...
- 13 Red-black Trees
13 Red-black Trees Red-black trees are one of many search-tree schemes that are "balanced" ...
- 解决hibernate对Sql Server分页慢的问题
一.hibernate分页 hibernate对MsSql的伪分页 分页是web项目中比不可少的一个功能,数据量大的时候不能全部展示必然要用到分页技术.相信大家对hibernate中的分页都不陌生: ...
- .Net Mvc EasyUI DataGrid 分页
由于项目的需要,最近一直在学习 .net MVC 和EasyUI.上周写了一个<.Net Mvc 返回Json,动态生成EasyUI Tree>,今天再写一个EasyUI中另一个重要的组件 ...
- [bzoj4816][Sdoi2017]数字表格 (反演+逆元)
(真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...
- js 给url添加时间戳 解决浏览器缓存
//解决浏览器缓存 function timestamp(url){ // var getTimestamp=Math.random(); var getTimestamp=new Dat ...
- 01CSS使用方法
CSS使用方法 内联定义 内联定义即是在对象的标记内使用对象的style属性定义适用其的样式表属性. 内部样式表 <style type="text/css"></style> ...
- listener.log文件过大导致oracle假死
/home/u01/oracle/product/11gr2/db_1/log/diag/tnslsnr/VM_179_95_centos/listener/trace/listener.log li ...
- 无法完成安装:'Cannot access storage file '/
今天自己编译了spice-protocol spice-gtk spice qemu,然后想用virsh去创建一个虚机: # virsh define demo.xml 定义域 demo(从 ...
- Git中文书籍
Git中文书籍: http://git-scm.com/book/zh/v1