【第四课】kaggle案例分析四
Evernote Export
比赛题目介绍
- facebook想要准确的知道用户登录的地点,从而可以为用户提供更准确的服务
- 为了比赛,facebook创建了一个虚拟世界地图,地图面积为100km2,其中包含了超过1000000个地点
- 通过给定的坐标,以及坐标准确性,判断用户登录地点
- 训练集和测试集是根据时间划分的,而在公共排行榜和私人排行榜上的测试集数据是随机划分的
- row_id 登录事件的id,作为标识符使用
- x,y:坐标数值
- accuracy:坐标的准确性
- time:时间戳
- place_id:地点id,需要预测的变量
- 其中,accuracy和time的具体含义并没有给出,关于这两个变量的探索也是比赛的一部分内容
XGboost
XGboost就是梯度提升树的改进(速度快)
kaggle神器 XGboost
模型: 如何在已知xi而预测y^i
线性模型:y^i=∑jwjxij包含线性模型和逻辑回归模型
预测分数y^i可以有基于任务的不同解读
- 线性回归 y^i是预测分数
- 逻辑回归 1+exp(−y^i)1是对积极的实例的可能性预测
- 其他,比如排名预测
参数:我们需要从数据中学习到的参数
线性模型:wj∣j=1,...,d
损失函数的使用
Obj(Θ)=L(Θ)+Ω(Θ)
训练数据中的损失:L=∑i=1nl(yi,y^i)
- 方差损失 l(yi,y^i)=(yi−y^i)2
- 逻辑损失 l(yi,y^i)=yiln(1+e−y^i)+(1−yi)ln(1+eey^i)
模型的复杂度
- L2规范 Ω(w)=λ∣∣w∣∣2
- L1规范 Ω(w)=λ∣∣w∣∣1
正则项(惩罚模型的复杂度) ∑i=1n(yi−wTxi)2+λ∣∣w∣∣2
Lasso ∑i=1n(yi−wTxi)2+λ∣∣w∣∣1
逻辑回归 ∑i=1n[yiln(1+e−wTxi)+(1−yi)ln(1+ewTxi)]+λ∣∣w∣∣2
回归树
- 线性回归问题就是用折线或者折平面(高维度)去拟合训练集
- 用小的决策树,不剪枝,用投票的方式将决策树组合起来
- 折线回归树预测:
y^i=k=1∑Kfk(xi),fk∈F
数据探索
特征工程
- 与坐标相关的特征
- 与时间相关的特征
- 与准确性相关的特征
- Z-值
%23%23%23%20%E6%AF%94%E8%B5%9B%E9%A2%98%E7%9B%AE%E4%BB%8B%E7%BB%8D%0A*%20facebook%E6%83%B3%E8%A6%81%E5%87%86%E7%A1%AE%E7%9A%84%E7%9F%A5%E9%81%93%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95%E7%9A%84%E5%9C%B0%E7%82%B9%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%8F%AF%E4%BB%A5%E4%B8%BA%E7%94%A8%E6%88%B7%E6%8F%90%E4%BE%9B%E6%9B%B4%E5%87%86%E7%A1%AE%E7%9A%84%E6%9C%8D%E5%8A%A1%0A*%20%E4%B8%BA%E4%BA%86%E6%AF%94%E8%B5%9B%EF%BC%8Cfacebook%E5%88%9B%E5%BB%BA%E4%BA%86%E4%B8%80%E4%B8%AA%E8%99%9A%E6%8B%9F%E4%B8%96%E7%95%8C%E5%9C%B0%E5%9B%BE%EF%BC%8C%E5%9C%B0%E5%9B%BE%E9%9D%A2%E7%A7%AF%E4%B8%BA%24100km%5E2%24%EF%BC%8C%E5%85%B6%E4%B8%AD%E5%8C%85%E5%90%AB%E4%BA%86%E8%B6%85%E8%BF%871000000%E4%B8%AA%E5%9C%B0%E7%82%B9%0A*%20%E9%80%9A%E8%BF%87%E7%BB%99%E5%AE%9A%E7%9A%84%E5%9D%90%E6%A0%87%EF%BC%8C%E4%BB%A5%E5%8F%8A%E5%9D%90%E6%A0%87%E5%87%86%E7%A1%AE%E6%80%A7%EF%BC%8C%E5%88%A4%E6%96%AD%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95%E5%9C%B0%E7%82%B9%0A*%20%20%E8%AE%AD%E7%BB%83%E9%9B%86%E5%92%8C%E6%B5%8B%E8%AF%95%E9%9B%86%E6%98%AF%E6%A0%B9%E6%8D%AE%E6%97%B6%E9%97%B4%E5%88%92%E5%88%86%E7%9A%84%EF%BC%8C%E8%80%8C%E5%9C%A8%E5%85%AC%E5%85%B1%E6%8E%92%E8%A1%8C%E6%A6%9C%E5%92%8C%E7%A7%81%E4%BA%BA%E6%8E%92%E8%A1%8C%E6%A6%9C%E4%B8%8A%E7%9A%84%E6%B5%8B%E8%AF%95%E9%9B%86%E6%95%B0%E6%8D%AE%E6%98%AF%E9%9A%8F%E6%9C%BA%E5%88%92%E5%88%86%E7%9A%84%0A*%20row_id%20%E7%99%BB%E5%BD%95%E4%BA%8B%E4%BB%B6%E7%9A%84id%EF%BC%8C%E4%BD%9C%E4%B8%BA%E6%A0%87%E8%AF%86%E7%AC%A6%E4%BD%BF%E7%94%A8%0A*%20x%EF%BC%8Cy%EF%BC%9A%E5%9D%90%E6%A0%87%E6%95%B0%E5%80%BC%0A*%20accuracy%EF%BC%9A%E5%9D%90%E6%A0%87%E7%9A%84%E5%87%86%E7%A1%AE%E6%80%A7%0A*%20time%EF%BC%9A%E6%97%B6%E9%97%B4%E6%88%B3%0A*%20place_id%EF%BC%9A%E5%9C%B0%E7%82%B9id%EF%BC%8C%E9%9C%80%E8%A6%81%E9%A2%84%E6%B5%8B%E7%9A%84%E5%8F%98%E9%87%8F%0A*%20%E5%85%B6%E4%B8%AD%EF%BC%8Caccuracy%E5%92%8Ctime%E7%9A%84%E5%85%B7%E4%BD%93%E5%90%AB%E4%B9%89%E5%B9%B6%E6%B2%A1%E6%9C%89%E7%BB%99%E5%87%BA%EF%BC%8C%E5%85%B3%E4%BA%8E%E8%BF%99%E4%B8%A4%E4%B8%AA%E5%8F%98%E9%87%8F%E7%9A%84%E6%8E%A2%E7%B4%A2%E4%B9%9F%E6%98%AF%E6%AF%94%E8%B5%9B%E7%9A%84%E4%B8%80%E9%83%A8%E5%88%86%E5%86%85%E5%AE%B9%0A%23%23%23%20XGboost%0A*%20XGboost%E5%B0%B1%E6%98%AF%E6%A2%AF%E5%BA%A6%E6%8F%90%E5%8D%87%E6%A0%91%E7%9A%84%E6%94%B9%E8%BF%9B(%E9%80%9F%E5%BA%A6%E5%BF%AB)%0A*%20kaggle%E7%A5%9E%E5%99%A8%20XGboost%0A*%20**%E6%A8%A1%E5%9E%8B%EF%BC%9A**%20%E5%A6%82%E4%BD%95%E5%9C%A8%E5%B7%B2%E7%9F%A5%24x_i%24%E8%80%8C%E9%A2%84%E6%B5%8B%24%5Chat%20y_i%24%0A*%20%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%EF%BC%9A%24%5Chat%20y_i%20%3D%20%5Csum_j%20w_jx_%7Bij%7D%24%E5%8C%85%E5%90%AB%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%E5%92%8C%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%E6%A8%A1%E5%9E%8B%0A*%20%E9%A2%84%E6%B5%8B%E5%88%86%E6%95%B0%24%5Chat%20y_i%24%E5%8F%AF%E4%BB%A5%E6%9C%89%E5%9F%BA%E4%BA%8E%E4%BB%BB%E5%8A%A1%E7%9A%84%E4%B8%8D%E5%90%8C%E8%A7%A3%E8%AF%BB%0A%20%20%20%20*%20%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%20%24%5Chat%20y_i%24%E6%98%AF%E9%A2%84%E6%B5%8B%E5%88%86%E6%95%B0%0A%20%20%20%20*%20%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%20%24%5Cfrac%7B1%7D%7B1%2Bexp(-%20%5Chat%20y_i)%7D%24%E6%98%AF%E5%AF%B9%E7%A7%AF%E6%9E%81%E7%9A%84%E5%AE%9E%E4%BE%8B%E7%9A%84%E5%8F%AF%E8%83%BD%E6%80%A7%E9%A2%84%E6%B5%8B%0A%20%20%20%20*%20%E5%85%B6%E4%BB%96%EF%BC%8C%E6%AF%94%E5%A6%82%E6%8E%92%E5%90%8D%E9%A2%84%E6%B5%8B%0A%20*%20%E5%8F%82%E6%95%B0%EF%BC%9A%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E4%BB%8E%E6%95%B0%E6%8D%AE%E4%B8%AD%E5%AD%A6%E4%B9%A0%E5%88%B0%E7%9A%84%E5%8F%82%E6%95%B0%0A%20*%20%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%EF%BC%9A%24%7Bw_j%7Cj%3D1%2C...%2Cd%7D%24%0A%20*%20%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0%E7%9A%84%E4%BD%BF%E7%94%A8%0A%20*%20%24%24Obj(%5CTheta)%20%3D%20L(%5CTheta)%20%2B%20%5COmega(%5CTheta)%20%24%24%0A%20*%20%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE%E4%B8%AD%E7%9A%84%E6%8D%9F%E5%A4%B1%EF%BC%9A%24L%20%3D%20%5Csum%5En_%7Bi%3D1%7Dl(y_i%2C%5Chat%20y_i)%24%0A%20%20%20%20*%20%E6%96%B9%E5%B7%AE%E6%8D%9F%E5%A4%B1%20%24l(y_i%2C%5Chat%20y_i)%20%3D%20(y_i%20-%20%5Chat%20y_i)%5E2%24%0A%20%20%20%20*%20%E9%80%BB%E8%BE%91%E6%8D%9F%E5%A4%B1%20%24l(y_i%2C%5Chat%20y_i)%20%3D%20y_iln(1%2Be%5E%7B-%20%5Chat%20y_i%7D)%2B(1-y_i)ln(1%2Be%5E%7Be%20%5Chat%20y_i%7D)%24%0A%20*%20%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%8D%E6%9D%82%E5%BA%A6%0A%20%20%20%20*%20L2%E8%A7%84%E8%8C%83%20%24%5COmega%20(w)%20%3D%20%5Clambda%20%7C%7Cw%7C%7C%5E2%24%0A%20%20%20%20*%20L1%E8%A7%84%E8%8C%83%20%24%5COmega(w)%20%3D%20%5Clambda%20%7C%7Cw%7C%7C_1%24%0A%20%0A*%20%E6%AD%A3%E5%88%99%E9%A1%B9(%E6%83%A9%E7%BD%9A%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%8D%E6%9D%82%E5%BA%A6)%20%24%5Csum%5En_%7Bi%3D1%7D(y_i-w%5ETx_i)%5E2%2B%5Clambda%7C%7Cw%7C%7C%5E2%24%0A*%20Lasso%20%24%5Csum%5En_%7Bi%3D1%7D(y_i-w%5ETx_i)%5E2%2B%5Clambda%7C%7Cw%7C%7C_1%24%0A%0A*%20%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%20%24%5Csum%5En_%7Bi%3D1%7D%5By_iln(1%2Be%5E%7B-w%5ETx_i%7D)%2B(1-y_i)ln(1%2Be%5E%7Bw%5ETx_i%7D)%5D%2B%5Clambda%7C%7Cw%7C%7C%5E2%24%0A%0A%23%23%23%23%20%E5%9B%9E%E5%BD%92%E6%A0%91%0A*%20%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E9%97%AE%E9%A2%98%E5%B0%B1%E6%98%AF%E7%94%A8%E6%8A%98%E7%BA%BF%E6%88%96%E8%80%85%E6%8A%98%E5%B9%B3%E9%9D%A2(%E9%AB%98%E7%BB%B4%E5%BA%A6)%E5%8E%BB%E6%8B%9F%E5%90%88%E8%AE%AD%E7%BB%83%E9%9B%86%0A*%20%E7%94%A8%E5%B0%8F%E7%9A%84%E5%86%B3%E7%AD%96%E6%A0%91%EF%BC%8C%E4%B8%8D%E5%89%AA%E6%9E%9D%EF%BC%8C%E7%94%A8%E6%8A%95%E7%A5%A8%E7%9A%84%E6%96%B9%E5%BC%8F%E5%B0%86%E5%86%B3%E7%AD%96%E6%A0%91%E7%BB%84%E5%90%88%E8%B5%B7%E6%9D%A5%0A*%20%E6%8A%98%E7%BA%BF%E5%9B%9E%E5%BD%92%E6%A0%91%E9%A2%84%E6%B5%8B%EF%BC%9A%0A*%20%24%24%5Chat%20y_i%20%3D%20%5Csum%5EK_%7Bk%3D1%7Df_k(x_i)%2Cf_k%20%5Cin%20F%24%24%0A%0A%0A%0A!%5B01cc019ccf72cd1a39c053867d03f1fe.png%5D(en-resource%3A%2F%2Fdatabase%2F1362%3A1)%0A%0A%0A%23%23%23%20%E6%95%B0%E6%8D%AE%E6%8E%A2%E7%B4%A2%0A%0A%23%23%23%20%E7%89%B9%E5%BE%81%E5%B7%A5%E7%A8%8B%0A*%20%E4%B8%8E%E5%9D%90%E6%A0%87%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20%E4%B8%8E%E6%97%B6%E9%97%B4%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20%E4%B8%8E%E5%87%86%E7%A1%AE%E6%80%A7%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20Z-%E5%80%BC%0A%0A%23%23%23%20XGBoost%0A*%20%E4%B8%89%E7%B1%BB%E5%8F%82%E6%95%B0%0A%20%20%20%20*%20General%20Parameters%0A%20%20%20%20*%20Booster%20Parameters%0A%20%20%20%20*%20Learning%20Task%20Parameters%0A*%20eta%0A*%20gamma%0A*%20max_depth%0A*%20min_child_weight%0A*%20max_delta_step%0A*%20subsample%0A*%20colsample%0A*%20colsample_bylevel%0A*%20lambda%0A*%20alpha%0A*%20tree_method%0A*%20sketch_eps%0A*%20scale_pos_weight%0A*%20updater%0A*%20refresh_leaf%0A*%20process_type%0A*%20grow_plilcy%0A*%20max_leaves%0A*%20max_bins%0A*%20**%E9%80%89%E6%8B%A9%E8%BE%83%E9%AB%98%E7%9A%84eta**%0A*%20**%E7%A1%AE%E5%AE%9A%E5%90%88%E9%80%82%E7%9A%84%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0**%0A*%20**%E7%A1%AE%E5%AE%9A%E8%B0%83%E6%95%B4%E6%A0%91%E7%BB%93%E6%9E%84%E7%9A%84%E7%89%B9%E5%AE%9A%E5%8F%82%E6%95%B0**%0A*%20**%E8%B0%83%E6%95%B4XGBoost%E7%9A%84%E6%AD%A3%E5%88%99%E5%8C%96%E5%8F%82%E6%95%B0**%0A*%20**%E9%80%90%E6%AD%A5%E9%99%8D%E4%BD%8Eeta%EF%BC%8C%E6%8F%90%E9%AB%98%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E9%87%8D%E6%96%B0%E8%AE%AD%E7%BB%83%E6%A8%A1%E5%9E%8B%EF%BC%8C%E5%AF%BB%E6%89%BE%E5%90%88%E9%80%82%E7%9A%84eta**
【第四课】kaggle案例分析四的更多相关文章
- 【Hadoop学习之十二】MapReduce案例分析四-TF-IDF
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 概念TF-IDF(term fre ...
- 【第三课】kaggle案例分析三
Evernote Export 比赛题目介绍 TalkingData是中国最大的第三方移动数据平台,移动设备用户日常的选择和行为用户画像.目前,TalkingData正在寻求每天在中国活跃的5亿移动设 ...
- 【第二课】kaggle案例分析二
Evernote Export 推荐系统比赛(常见比赛) 推荐系统分类 最能变现的机器学习应用 基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐等 **基于设计思想:**基于协 ...
- Kaggle案例分析3--Bag of Words Meets Bags of Popcorn
项目描述:这是一个关于情感分析的教程.谷歌的Word2Vec(文本深度表示模型)是一个由深度学习驱动的方法, 旨在获取words内部的含义.Word2Vec试图理解单词之间的含义与语义关系.它类似于r ...
- Kaggle案例分析1--Bestbuy
1. 引言 Kaggle是一个进行数据挖掘和数据分析在线竞赛网站, 成立于2010年. 与Kaggle合作的公司可以提供一个数据+一个问题, 再加上适当的奖励, Kaggle上的计算机科学家和数据科学 ...
- ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区
原文:ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区 1 入门案例分析 在第一章里,我们已经对ArcGIS系列软件的体系结构有了一 ...
- 第四次作业——关于石墨文档(Android)客户端的案例分析
关于石墨文档(Android)客户端的案例分析 作业地址:[https://edu.cnblogs.com/campus/nenu/2016CS/homework/2505] 第一部分调研,评测 1. ...
- NeHe OpenGL教程 第二十四课:扩展
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
- NeHe OpenGL教程 第十四课:图形字体
转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...
随机推荐
- VB Socket编程 框架
[转载]VB Socket编程 框架 (2014-07-15 20:06:28) 转载▼ 标签: 转载 原文地址:VB Socket编程 框架作者:安静的浪花 VB Socket编程(Winsoc ...
- UITableView和UITableViewCell的几种样式
UITableView和UITableViewCell的几种样式 转至 http://blog.csdn.net/crazyzhang1990/article/details/12503163 一. ...
- oop_day06_抽象类、接口_20150814
oop_day06_抽象类.接口_20150814 1.static final常量: 1)必须声明同一时候初始化.不能改动,类名点来訪问 2)常量名建议全部字母都大写 3)编译器编译时会直接替换为详 ...
- 用C++实现一个Quaternion类
提要 四元素是游戏开发中经常使用的用于处理旋转的数学工具,以下就用C++来实现一个四元素类.參考Unity中四元素的接口. 假设没有看之前的 彻底搞懂四元数. 建议先看一下. 代码清单 Quatern ...
- 深入理解7816(3)-----关于T=0 【转】
本文转载自:http://blog.sina.com.cn/s/blog_4df8400a0102vcyp.html 深入理解7816(3)-----关于T=0 卡片和终端之间的数据传输是通过命令响应 ...
- 51Nod 1250 排列与交换 —— DP
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 看了半天... 把第一问想成逆序对的话似乎很容易想了,新加入 ...
- Makefile 实际用例分析(一) ------- 比较通用的一种架构
这里不再说Makefile的基本知识,如果需要学习,那么请参考: 下载:makefile 中文手册 或者 点击打开链接 或者 跟我一起写Makefile( 陈皓 ) 这里说的是一般的实际的一个工程应该 ...
- Kernel trick----PRML读书笔记
Many linear parametric models can be re-cast into an equivalent 'dual representstion' in which the p ...
- Flink之Window Operation
目录 Configuring Time Characteristics Process Functions Window Operators Applying Functions on Windows ...
- maven的pom.xml文件错误
来自:http://www.cnblogs.com/shihujiang/p/3492864.html