Evernote Export

比赛题目介绍

  • facebook想要准确的知道用户登录的地点,从而可以为用户提供更准确的服务
  • 为了比赛,facebook创建了一个虚拟世界地图,地图面积为100km2,其中包含了超过1000000个地点
  • 通过给定的坐标,以及坐标准确性,判断用户登录地点
  • 训练集和测试集是根据时间划分的,而在公共排行榜和私人排行榜上的测试集数据是随机划分的
  • row_id 登录事件的id,作为标识符使用
  • x,y:坐标数值
  • accuracy:坐标的准确性
  • time:时间戳
  • place_id:地点id,需要预测的变量
  • 其中,accuracy和time的具体含义并没有给出,关于这两个变量的探索也是比赛的一部分内容

XGboost

  • XGboost就是梯度提升树的改进(速度快)

  • kaggle神器 XGboost

  • 模型: 如何在已知xi​而预测y^​i​

  • 线性模型:y^​i​=∑j​wj​xij​包含线性模型和逻辑回归模型

  • 预测分数y^​i​可以有基于任务的不同解读

    • 线性回归 y^​i​是预测分数
    • 逻辑回归 1+exp(−y^​i​)1​是对积极的实例的可能性预测
    • 其他,比如排名预测
  • 参数:我们需要从数据中学习到的参数

  • 线性模型:wj​∣j=1,...,d

  • 损失函数的使用

  • Obj(Θ)=L(Θ)+Ω(Θ)

  • 训练数据中的损失:L=∑i=1n​l(yi​,y^​i​)

    • 方差损失 l(yi​,y^​i​)=(yi​−y^​i​)2
    • 逻辑损失 l(yi​,y^​i​)=yi​ln(1+e−y^​i​)+(1−yi​)ln(1+eey^​i​)
  • 模型的复杂度

    • L2规范 Ω(w)=λ∣∣w∣∣2
    • L1规范 Ω(w)=λ∣∣w∣∣1​
  • 正则项(惩罚模型的复杂度) ∑i=1n​(yi​−wTxi​)2+λ∣∣w∣∣2

  • Lasso ∑i=1n​(yi​−wTxi​)2+λ∣∣w∣∣1​

  • 逻辑回归 ∑i=1n​[yi​ln(1+e−wTxi​)+(1−yi​)ln(1+ewTxi​)]+λ∣∣w∣∣2

回归树

  • 线性回归问题就是用折线或者折平面(高维度)去拟合训练集
  • 用小的决策树,不剪枝,用投票的方式将决策树组合起来
  • 折线回归树预测:
  • y^​i​=k=1∑K​fk​(xi​),fk​∈F

数据探索

特征工程

  • 与坐标相关的特征
  • 与时间相关的特征
  • 与准确性相关的特征
  • Z-值

%23%23%23%20%E6%AF%94%E8%B5%9B%E9%A2%98%E7%9B%AE%E4%BB%8B%E7%BB%8D%0A*%20facebook%E6%83%B3%E8%A6%81%E5%87%86%E7%A1%AE%E7%9A%84%E7%9F%A5%E9%81%93%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95%E7%9A%84%E5%9C%B0%E7%82%B9%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%8F%AF%E4%BB%A5%E4%B8%BA%E7%94%A8%E6%88%B7%E6%8F%90%E4%BE%9B%E6%9B%B4%E5%87%86%E7%A1%AE%E7%9A%84%E6%9C%8D%E5%8A%A1%0A*%20%E4%B8%BA%E4%BA%86%E6%AF%94%E8%B5%9B%EF%BC%8Cfacebook%E5%88%9B%E5%BB%BA%E4%BA%86%E4%B8%80%E4%B8%AA%E8%99%9A%E6%8B%9F%E4%B8%96%E7%95%8C%E5%9C%B0%E5%9B%BE%EF%BC%8C%E5%9C%B0%E5%9B%BE%E9%9D%A2%E7%A7%AF%E4%B8%BA%24100km%5E2%24%EF%BC%8C%E5%85%B6%E4%B8%AD%E5%8C%85%E5%90%AB%E4%BA%86%E8%B6%85%E8%BF%871000000%E4%B8%AA%E5%9C%B0%E7%82%B9%0A*%20%E9%80%9A%E8%BF%87%E7%BB%99%E5%AE%9A%E7%9A%84%E5%9D%90%E6%A0%87%EF%BC%8C%E4%BB%A5%E5%8F%8A%E5%9D%90%E6%A0%87%E5%87%86%E7%A1%AE%E6%80%A7%EF%BC%8C%E5%88%A4%E6%96%AD%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95%E5%9C%B0%E7%82%B9%0A*%20%20%E8%AE%AD%E7%BB%83%E9%9B%86%E5%92%8C%E6%B5%8B%E8%AF%95%E9%9B%86%E6%98%AF%E6%A0%B9%E6%8D%AE%E6%97%B6%E9%97%B4%E5%88%92%E5%88%86%E7%9A%84%EF%BC%8C%E8%80%8C%E5%9C%A8%E5%85%AC%E5%85%B1%E6%8E%92%E8%A1%8C%E6%A6%9C%E5%92%8C%E7%A7%81%E4%BA%BA%E6%8E%92%E8%A1%8C%E6%A6%9C%E4%B8%8A%E7%9A%84%E6%B5%8B%E8%AF%95%E9%9B%86%E6%95%B0%E6%8D%AE%E6%98%AF%E9%9A%8F%E6%9C%BA%E5%88%92%E5%88%86%E7%9A%84%0A*%20row_id%20%E7%99%BB%E5%BD%95%E4%BA%8B%E4%BB%B6%E7%9A%84id%EF%BC%8C%E4%BD%9C%E4%B8%BA%E6%A0%87%E8%AF%86%E7%AC%A6%E4%BD%BF%E7%94%A8%0A*%20x%EF%BC%8Cy%EF%BC%9A%E5%9D%90%E6%A0%87%E6%95%B0%E5%80%BC%0A*%20accuracy%EF%BC%9A%E5%9D%90%E6%A0%87%E7%9A%84%E5%87%86%E7%A1%AE%E6%80%A7%0A*%20time%EF%BC%9A%E6%97%B6%E9%97%B4%E6%88%B3%0A*%20place_id%EF%BC%9A%E5%9C%B0%E7%82%B9id%EF%BC%8C%E9%9C%80%E8%A6%81%E9%A2%84%E6%B5%8B%E7%9A%84%E5%8F%98%E9%87%8F%0A*%20%E5%85%B6%E4%B8%AD%EF%BC%8Caccuracy%E5%92%8Ctime%E7%9A%84%E5%85%B7%E4%BD%93%E5%90%AB%E4%B9%89%E5%B9%B6%E6%B2%A1%E6%9C%89%E7%BB%99%E5%87%BA%EF%BC%8C%E5%85%B3%E4%BA%8E%E8%BF%99%E4%B8%A4%E4%B8%AA%E5%8F%98%E9%87%8F%E7%9A%84%E6%8E%A2%E7%B4%A2%E4%B9%9F%E6%98%AF%E6%AF%94%E8%B5%9B%E7%9A%84%E4%B8%80%E9%83%A8%E5%88%86%E5%86%85%E5%AE%B9%0A%23%23%23%20XGboost%0A*%20XGboost%E5%B0%B1%E6%98%AF%E6%A2%AF%E5%BA%A6%E6%8F%90%E5%8D%87%E6%A0%91%E7%9A%84%E6%94%B9%E8%BF%9B(%E9%80%9F%E5%BA%A6%E5%BF%AB)%0A*%20kaggle%E7%A5%9E%E5%99%A8%20XGboost%0A*%20**%E6%A8%A1%E5%9E%8B%EF%BC%9A**%20%E5%A6%82%E4%BD%95%E5%9C%A8%E5%B7%B2%E7%9F%A5%24x_i%24%E8%80%8C%E9%A2%84%E6%B5%8B%24%5Chat%20y_i%24%0A*%20%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%EF%BC%9A%24%5Chat%20y_i%20%3D%20%5Csum_j%20w_jx_%7Bij%7D%24%E5%8C%85%E5%90%AB%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%E5%92%8C%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%E6%A8%A1%E5%9E%8B%0A*%20%E9%A2%84%E6%B5%8B%E5%88%86%E6%95%B0%24%5Chat%20y_i%24%E5%8F%AF%E4%BB%A5%E6%9C%89%E5%9F%BA%E4%BA%8E%E4%BB%BB%E5%8A%A1%E7%9A%84%E4%B8%8D%E5%90%8C%E8%A7%A3%E8%AF%BB%0A%20%20%20%20*%20%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%20%24%5Chat%20y_i%24%E6%98%AF%E9%A2%84%E6%B5%8B%E5%88%86%E6%95%B0%0A%20%20%20%20*%20%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%20%24%5Cfrac%7B1%7D%7B1%2Bexp(-%20%5Chat%20y_i)%7D%24%E6%98%AF%E5%AF%B9%E7%A7%AF%E6%9E%81%E7%9A%84%E5%AE%9E%E4%BE%8B%E7%9A%84%E5%8F%AF%E8%83%BD%E6%80%A7%E9%A2%84%E6%B5%8B%0A%20%20%20%20*%20%E5%85%B6%E4%BB%96%EF%BC%8C%E6%AF%94%E5%A6%82%E6%8E%92%E5%90%8D%E9%A2%84%E6%B5%8B%0A%20*%20%E5%8F%82%E6%95%B0%EF%BC%9A%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E4%BB%8E%E6%95%B0%E6%8D%AE%E4%B8%AD%E5%AD%A6%E4%B9%A0%E5%88%B0%E7%9A%84%E5%8F%82%E6%95%B0%0A%20*%20%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B%EF%BC%9A%24%7Bw_j%7Cj%3D1%2C...%2Cd%7D%24%0A%20*%20%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0%E7%9A%84%E4%BD%BF%E7%94%A8%0A%20*%20%24%24Obj(%5CTheta)%20%3D%20L(%5CTheta)%20%2B%20%5COmega(%5CTheta)%20%24%24%0A%20*%20%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE%E4%B8%AD%E7%9A%84%E6%8D%9F%E5%A4%B1%EF%BC%9A%24L%20%3D%20%5Csum%5En_%7Bi%3D1%7Dl(y_i%2C%5Chat%20y_i)%24%0A%20%20%20%20*%20%E6%96%B9%E5%B7%AE%E6%8D%9F%E5%A4%B1%20%24l(y_i%2C%5Chat%20y_i)%20%3D%20(y_i%20-%20%5Chat%20y_i)%5E2%24%0A%20%20%20%20*%20%E9%80%BB%E8%BE%91%E6%8D%9F%E5%A4%B1%20%24l(y_i%2C%5Chat%20y_i)%20%3D%20y_iln(1%2Be%5E%7B-%20%5Chat%20y_i%7D)%2B(1-y_i)ln(1%2Be%5E%7Be%20%5Chat%20y_i%7D)%24%0A%20*%20%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%8D%E6%9D%82%E5%BA%A6%0A%20%20%20%20*%20L2%E8%A7%84%E8%8C%83%20%24%5COmega%20(w)%20%3D%20%5Clambda%20%7C%7Cw%7C%7C%5E2%24%0A%20%20%20%20*%20L1%E8%A7%84%E8%8C%83%20%24%5COmega(w)%20%3D%20%5Clambda%20%7C%7Cw%7C%7C_1%24%0A%20%0A*%20%E6%AD%A3%E5%88%99%E9%A1%B9(%E6%83%A9%E7%BD%9A%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%A4%8D%E6%9D%82%E5%BA%A6)%20%24%5Csum%5En_%7Bi%3D1%7D(y_i-w%5ETx_i)%5E2%2B%5Clambda%7C%7Cw%7C%7C%5E2%24%0A*%20Lasso%20%24%5Csum%5En_%7Bi%3D1%7D(y_i-w%5ETx_i)%5E2%2B%5Clambda%7C%7Cw%7C%7C_1%24%0A%0A*%20%E9%80%BB%E8%BE%91%E5%9B%9E%E5%BD%92%20%24%5Csum%5En_%7Bi%3D1%7D%5By_iln(1%2Be%5E%7B-w%5ETx_i%7D)%2B(1-y_i)ln(1%2Be%5E%7Bw%5ETx_i%7D)%5D%2B%5Clambda%7C%7Cw%7C%7C%5E2%24%0A%0A%23%23%23%23%20%E5%9B%9E%E5%BD%92%E6%A0%91%0A*%20%E7%BA%BF%E6%80%A7%E5%9B%9E%E5%BD%92%E9%97%AE%E9%A2%98%E5%B0%B1%E6%98%AF%E7%94%A8%E6%8A%98%E7%BA%BF%E6%88%96%E8%80%85%E6%8A%98%E5%B9%B3%E9%9D%A2(%E9%AB%98%E7%BB%B4%E5%BA%A6)%E5%8E%BB%E6%8B%9F%E5%90%88%E8%AE%AD%E7%BB%83%E9%9B%86%0A*%20%E7%94%A8%E5%B0%8F%E7%9A%84%E5%86%B3%E7%AD%96%E6%A0%91%EF%BC%8C%E4%B8%8D%E5%89%AA%E6%9E%9D%EF%BC%8C%E7%94%A8%E6%8A%95%E7%A5%A8%E7%9A%84%E6%96%B9%E5%BC%8F%E5%B0%86%E5%86%B3%E7%AD%96%E6%A0%91%E7%BB%84%E5%90%88%E8%B5%B7%E6%9D%A5%0A*%20%E6%8A%98%E7%BA%BF%E5%9B%9E%E5%BD%92%E6%A0%91%E9%A2%84%E6%B5%8B%EF%BC%9A%0A*%20%24%24%5Chat%20y_i%20%3D%20%5Csum%5EK_%7Bk%3D1%7Df_k(x_i)%2Cf_k%20%5Cin%20F%24%24%0A%0A%0A%0A!%5B01cc019ccf72cd1a39c053867d03f1fe.png%5D(en-resource%3A%2F%2Fdatabase%2F1362%3A1)%0A%0A%0A%23%23%23%20%E6%95%B0%E6%8D%AE%E6%8E%A2%E7%B4%A2%0A%0A%23%23%23%20%E7%89%B9%E5%BE%81%E5%B7%A5%E7%A8%8B%0A*%20%E4%B8%8E%E5%9D%90%E6%A0%87%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20%E4%B8%8E%E6%97%B6%E9%97%B4%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20%E4%B8%8E%E5%87%86%E7%A1%AE%E6%80%A7%E7%9B%B8%E5%85%B3%E7%9A%84%E7%89%B9%E5%BE%81%0A*%20Z-%E5%80%BC%0A%0A%23%23%23%20XGBoost%0A*%20%E4%B8%89%E7%B1%BB%E5%8F%82%E6%95%B0%0A%20%20%20%20*%20General%20Parameters%0A%20%20%20%20*%20Booster%20Parameters%0A%20%20%20%20*%20Learning%20Task%20Parameters%0A*%20eta%0A*%20gamma%0A*%20max_depth%0A*%20min_child_weight%0A*%20max_delta_step%0A*%20subsample%0A*%20colsample%0A*%20colsample_bylevel%0A*%20lambda%0A*%20alpha%0A*%20tree_method%0A*%20sketch_eps%0A*%20scale_pos_weight%0A*%20updater%0A*%20refresh_leaf%0A*%20process_type%0A*%20grow_plilcy%0A*%20max_leaves%0A*%20max_bins%0A*%20**%E9%80%89%E6%8B%A9%E8%BE%83%E9%AB%98%E7%9A%84eta**%0A*%20**%E7%A1%AE%E5%AE%9A%E5%90%88%E9%80%82%E7%9A%84%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0**%0A*%20**%E7%A1%AE%E5%AE%9A%E8%B0%83%E6%95%B4%E6%A0%91%E7%BB%93%E6%9E%84%E7%9A%84%E7%89%B9%E5%AE%9A%E5%8F%82%E6%95%B0**%0A*%20**%E8%B0%83%E6%95%B4XGBoost%E7%9A%84%E6%AD%A3%E5%88%99%E5%8C%96%E5%8F%82%E6%95%B0**%0A*%20**%E9%80%90%E6%AD%A5%E9%99%8D%E4%BD%8Eeta%EF%BC%8C%E6%8F%90%E9%AB%98%E5%BE%AA%E7%8E%AF%E6%AC%A1%E6%95%B0%E9%87%8D%E6%96%B0%E8%AE%AD%E7%BB%83%E6%A8%A1%E5%9E%8B%EF%BC%8C%E5%AF%BB%E6%89%BE%E5%90%88%E9%80%82%E7%9A%84eta**

【第四课】kaggle案例分析四的更多相关文章

  1. 【Hadoop学习之十二】MapReduce案例分析四-TF-IDF

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 概念TF-IDF(term fre ...

  2. 【第三课】kaggle案例分析三

    Evernote Export 比赛题目介绍 TalkingData是中国最大的第三方移动数据平台,移动设备用户日常的选择和行为用户画像.目前,TalkingData正在寻求每天在中国活跃的5亿移动设 ...

  3. 【第二课】kaggle案例分析二

    Evernote Export 推荐系统比赛(常见比赛) 推荐系统分类 最能变现的机器学习应用 基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐等 **基于设计思想:**基于协 ...

  4. Kaggle案例分析3--Bag of Words Meets Bags of Popcorn

    项目描述:这是一个关于情感分析的教程.谷歌的Word2Vec(文本深度表示模型)是一个由深度学习驱动的方法, 旨在获取words内部的含义.Word2Vec试图理解单词之间的含义与语义关系.它类似于r ...

  5. Kaggle案例分析1--Bestbuy

    1. 引言 Kaggle是一个进行数据挖掘和数据分析在线竞赛网站, 成立于2010年. 与Kaggle合作的公司可以提供一个数据+一个问题, 再加上适当的奖励, Kaggle上的计算机科学家和数据科学 ...

  6. ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区

    原文:ArcGIS for Desktop入门教程_第四章_入门案例分析 - ArcGIS知乎-新一代ArcGIS问答社区 1 入门案例分析 在第一章里,我们已经对ArcGIS系列软件的体系结构有了一 ...

  7. 第四次作业——关于石墨文档(Android)客户端的案例分析

    关于石墨文档(Android)客户端的案例分析 作业地址:[https://edu.cnblogs.com/campus/nenu/2016CS/homework/2505] 第一部分调研,评测 1. ...

  8. NeHe OpenGL教程 第二十四课:扩展

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  9. NeHe OpenGL教程 第十四课:图形字体

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

随机推荐

  1. MyBatis參数格式化异常解决方式:MyBatisSystemException:

    MyBatis參数格式化异常解决方式:MyBatisSystemException: 问题:今天使用MyBatis开发查询功能时,前台传入查询条件明明是String类型,到后台就报错,提示格式化数值错 ...

  2. 【数学】mex是什么

    最近在看博弈论,SG函数,所以什么是mex呢 然后百度了一下得到: mex(S) 的值为集合 S 中没有出现过的最小自然数.例如,mex({1,2}) = 0.mex({0,1,2,3}) = 4

  3. oc75--不可变字典NSDictionary

    // // main.m // NSDictionary // // #import <Foundation/Foundation.h> int main(int argc, const ...

  4. HDU 5862Counting Intersections

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  5. JSP-Runoob:JSP 发送邮件

    ylbtech-JSP-Runoob:JSP 发送邮件 1.返回顶部 1. JSP 发送邮件 虽然使用JSP实现邮件发送功能很简单,但是需要有JavaMail API,并且需要安装JavaBean A ...

  6. E20170928-hm

    deploy   vt. (尤指军事行动) 使展开; 施展; 有效地利用;部署 bate   vt. 减轻; 压制; 减去; 使软化;             vi. <方> 减少; 减弱 ...

  7. sql case when 用法

    sql语言中有没有类似C语言中的switch case的语句?? 没有,用case   when   来代替就行了.            例如,下面的语句显示中文年月         select  ...

  8. 小HY的四元组

    4.7 比赛T1,然而这题爆零了 其实很简单的...其实哈希都不用 所以首先记录每组的差值,按其sort一下再暴力找即可 #include<cstdio> #include<iost ...

  9. 【BZOJ4566_洛谷3181】[HAOI2016]找相同字符(SAM)

    自己yy的方法yyyyyyyy着就A了,写篇博客庆祝一下. 题目: 洛谷3181 分析: SAM(可能是)模板题(不会SAM的同学戳我:[知识总结]后缀自动机的构建). 对\(s1\)建出SAM,用\ ...

  10. C++ friend关键字

    友元:友元函数 友元类. 友元函数:不属于任何类,只是在类中声明一下(可以放在 private 或者 public,没有区别),告诉这个类,这个函数是你的朋友,当然朋友不是白当的:这个函数可以访问你的 ...