题目:

Description

由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会。议会以“每头牛 都可以获得自己想要的”为原则,建立了下面的投票系统: M只到场的奶牛 (1 <= M <= 4000) 会给N个议案投票(1 <= N <= 1,000) 。每只 奶牛会对恰好两个议案 B_i and C_i (1 <= B_i <= N; 1 <= C_i <= N)投 出“是”或“否”(输入文件中的'Y'和'N')。他们的投票结果分别为VB_i (VB_i in {'Y', 'N'}) and VC_i (VC_i in {'Y', 'N'})。 最后,议案会以如下的方式决定:每只奶牛投出的两票中至少有一票和最终结果相符合。 例如Bessie给议案1投了赞成'Y',给议案2投了反对'N',那么在任何合法的议案通过 方案中,必须满足议案1必须是'Y'或者议案2必须是'N'(或者同时满足)。 给出每只奶牛的投票,你的工作是确定哪些议案可以通过,哪些不能。如果不存在这样一个方案, 输出"IMPOSSIBLE"。如果至少有一个解,输出: Y 如果在每个解中,这个议案都必须通过 N 如果在每个解中,这个议案都必须驳回 ? 如果有的解这个议案可以通过,有的解中这个议案会被驳回 考虑如下的投票集合: - - - - - 议案 - - - - - 1 2 3 奶牛 1 YES NO 奶牛 2 NO NO 奶牛 3 YES YES 奶牛 4 YES YES 下面是两个可能的解: * 议案 1 通过(满足奶牛1,3,4) * 议案 2 驳回(满足奶牛2) * 议案 3 可以通过也可以驳回(这就是有两个解的原因) 事实上,上面的问题也只有两个解。所以,输出的答案如下: YN?

Input

* 第1行:两个空格隔开的整数:N和M * 第2到M+1行:第i+1行描述第i只奶牛的投票方案:B_i, VB_i, C_i, VC_i

Output

* 第1行:一个含有N个字符的串,第i个字符要么是'Y'(第i个议案必须通过),或者是'N' (第i个议案必须驳回),或者是'?'。 如果无解,输出"IMPOSSIBLE"。

Sample Input

3 4
1 Y 2 N
1 N 2 N
1 Y 3 Y
1 Y 2 Y

Sample Output

YN?

HINT

 

Source

题解:

2-sat问题的模板题目,先说2-sat问题的基本解法:

一些问题可以转成布尔方程来求解····

我们的目的是将其布尔方程的每个文字拆开成两点,一点表示其本身,一点表示它的非,比如a就拆成a与┐a,并且将各种运算符号转化为只含有^(与)和->(A->B表示A为真则B为真)的形式,比如∨转化为┐a -> b ^ ┐b -> a  ,a一定为真就转换为  ┐a->a  的形式,然后将->转换成边,两边连上对应的点。

如果a与┐a在最后建成的图的同一个强连通分量里···那么布尔方程有解

如果a所在强连通分量的拓扑序在┐a所在强连通分量的拓扑序之后,那么a为真,之前a为假,如果相等则真假均可以取。这里求拓扑序直接用tarjian即可,先找到的强连通分量的拓扑序一定更大

以上就是基本知识

但这道题有点特殊·····因为包含a拓扑序与┐a相等的情况要判断····用tarjian的话有点麻烦···

但n很小···直接dfs即可····若a可以到达┐a,则说明a可能与┐a在同一强连通分量或者a所在强连通分量的拓扑序小于等于┐a的拓扑序

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
int first[N],next[M],go[M],tot=,n,m;
bool visit[N];
inline void comb(int a,int b)
{
next[++tot]=first[a],first[a]=tot,go[tot]=b;
}
inline int tran(int a)
{
return (a%==)?a+:a-;
}
inline int R()
{
char c;
int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
inline void dfs(int u)
{
visit[u]=true;
for(int e=first[u];e;e=next[e])
{
if(!visit[go[e]])
dfs(go[e]);
}
}
inline bool jud(int u)
{
memset(visit,false,sizeof(visit));
dfs(u);
if(!visit[tran(u)]) return true;
else return false;
}
int main()
{
//freopen("a.in","r",stdin);
n=R(),m=R();
char s[],t[];
int a,b;
for(int i=;i<=m;i++)
{
scanf("%d%s%d%s",&a,s,&b,t);
int t1,t2;
if(s[]=='Y')
t1=a*-;
else
t1=a*;
if(t[]=='Y')
t2=b*-;
else
t2=b*;
comb(tran(t2),t1);
comb(tran(t1),t2);
}
for(int i=;i<=n;i++)
{
bool flag1=jud(i*-);
bool flag2=jud(i*);
if(!flag1&&!flag2) {cout<<"IMPOSSIBLE"<<endl;return ;}
else if(!flag1) cout<<"N";
else if(!flag2) cout<<"Y";
else cout<<"?";
}
return ;
}

算法复习——2—sat(bzoj2199)的更多相关文章

  1. C#冒泡算法复习

    C#冒泡算法复习 冒泡算法的意思:每一趟找到一个最小或最大的数放到最后面,比较总数的n-1次(因为比较是2个双双比较的) 第一层循环表示进行比较的次数,总共要比较(数的)-1次 (因为比较是2个双双比 ...

  2. C语言排序算法复习

    排序算法有很多种,这里在复习和分析的基础上,做一个自己的总结: 首先要知道有哪些排序算法,google一下,有云C语言7大经典排序算法(也有8大).主要包括冒泡排序,快速排序,选择排序,插入排序,希尔 ...

  3. KMP算法复习【+继续学习】

    离NOIP还剩12天,本蒟蒻开始准备复习了. 先来个KMP[似乎我并没有写过KMP的blog] KMP KMP算法是解决字符串匹配问题的一个算法,主要是单对单的字符串匹配加速,时间复杂度O(m + n ...

  4. 算法复习周------“动态规划之‘最长公共子序列’”&&《计蒜课》---最长公共子串题解

    问题描述: 这个问题其实很容易理解.就是给你两个序列X={x1,x2,x3......xm} Y={y1,y2,y3......ym},要求找出X和Y的一个最长的公共子序列. 例:Xi={A, B, ...

  5. 算法复习-P NP NPC NP-hard概念

    from http://blog.csdn.net/huang1024rui/article/details/49154507 P.NP.NPC和NP-Hard相关概念的图形和解释 一.相关概念 P: ...

  6. K-Means聚类和EM算法复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内 ...

  7. 通过“回文字算法”复习C++语言。

    一.什么是回文字 给定一个字符串,从前往后读和从后往前读,字符串序列不变.例如,河北省农村信用社的客服电话是“96369”,无论从后往前读,还是从前后往后读,各个字符出现的位置不变. 二.功能实现 ( ...

  8. 【转】常用算法复习及实现(C++版)

    一.霍夫曼树实现 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree).哈夫曼树是带权路径长度最短的树,权值较大 ...

  9. OI算法复习

    搜集一些算法,赛前背一背有好处的 转自各大网站 前排感谢:hzwer.风了咕凉 前辈...Orz 快速读入: int read() { ,f=;char ch=getchar(); ;ch=getch ...

随机推荐

  1. 修改完linux bashrc文件之后,如何不重启系统使其生效

    修改完后,输入如下命令即可 ##@##:~/    source ~/.bashrc 之后bashrc文件就可以使用! 注: 使用ssh登陆shell的时候,系统不会自动调用.bashrc文件, 只是 ...

  2. windows 操作系统种类

    @hcy 敬请访问:http://blog.sina.com.cn/iihcy Microsoft公司从1983年开始研制Windows系统,最初的研制目标是在MS-DOS的基础上提供一个多任务的图形 ...

  3. COGS 696. [IOI1996][USACO 2.3] 最长前缀

    ★   输入文件:prefix.in   输出文件:prefix.out   简单对比时间限制:1 s   内存限制:128 MB 描述 USACO 2.3.1 IOI96 在生物学中,一些生物的结构 ...

  4. WPF知识点全攻略02- WPF体系结构

    WPF体系结构图: PersentationFramework.dll包含WPF顶层的类型,包括哪些表示窗口.面板以及其他类型控件的类型.他还实现了高层编程抽象,如样式.开发人员直接使用的大部分类都来 ...

  5. 用cssText批量修改样式

    一般情况下我们用js设置元素对象的样式会使用这样的形式: var element= document.getElementById(“id”);element.style.width=”20px”;e ...

  6. JavaScript中对象的属性:如何遍历属性

    for/in 语句循环遍历对象的属性. js中获取key得到某对象中相对应的value的方法:obj.key js中根据动态key得到某对象中相对应的value的方法有二: 一.var key = & ...

  7. end和sep的使用方法

    end: 默认是换行'\n',表示以什么结尾,比如以, | \n 等 方法: 默认end = '\n' a b c 如果end = ' ' a b c sep: 默认是空格' ' 表示两个字符之间用什 ...

  8. javaEE(9)_在线支付

    一.目前主要的两种支付方案 二.支付流程 1.用户在提交订单完成选择易宝支付按钮后,会跳转到如下页面选择要支付的银行,如下所示: <!DOCTYPE HTML PUBLIC "-//W ...

  9. Spring框架针对dao层的jdbcTemplate操作crud之query查询数据操作

    查询目标是完成3个功能: (1)查询表,返回某一个值.例如查询表中记录的条数,返回一个int类型数据 (2)查询表,返回结果为某一个对象. (3)查询表,返回结果为某一个泛型的list集合. 一.查询 ...

  10. css去除链接 input 虚框

    /* css去掉虚框 */ :focus{-webkit-outline-style:none;-moz-outline-style:none;-ms-outline-style:none;-o-ou ...