题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

输入

第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。

输出

对于每个询问,输出一行对应的答案。

样例输入

5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

样例输出

2
4
8
8
8


题解

主席树的一道神题

我们先想暴力怎么做:把一段区间的数取出来,排个序,从小到大选择。如果$a1$~$a_{i-1}$能够表示$1~x$,此时加入$a_i$,如果$a_i\le x+1$,那么就可以表示$x+a_i$,否则x就是答案。

试着优化一下这个过程:设$a_{i-1}=k$,$a_i=y$,1~i-1的神秘数为ans=x+1,那么显然$ans=\sum\limits_{t=1}^{i-1}a_t$。此时如果存在k+1~ans的数就可以更新ans。更具体地,如果k+1~ans内的数的和为s,那么ans+=s;而ans为1~k的数的和+1,故ans的新值应该赋为1~ans的数的和。

说了这么多废话有什么用?我们可以发现每次ans的增量都大于等于前一次的ans,所以这个过程的时间复杂度应该为$O(\log a)$。

而事实上我们并不能把区间拿出来排序,所以需要使用数据结构,上一个主席树就好了。

时间复杂度为$O(n\log^2n)$

#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
int v[N] , a[N] , root[N] , ls[N << 5] , rs[N << 5] , sum[N << 5] , tot;
void insert(int p , int l , int r , int x , int &y)
{
y = ++tot , sum[y] = sum[x] + a[p];
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) rs[y] = rs[x] , insert(p , l , mid , ls[x] , ls[y]);
else ls[y] = ls[x] , insert(p , mid + 1 , r , rs[x] , rs[y]);
}
int query(int p , int l , int r , int x , int y)
{
if(r <= p) return sum[y] - sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return query(p , l , mid , ls[x] , ls[y]);
else return query(p , mid + 1 , r , rs[x] , rs[y]) + sum[ls[y]] - sum[ls[x]];
}
int main()
{
int n , m , i , x , y , ans , tmp;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , v[i] = a[i];
sort(a + 1 , a + n + 1);
for(i = 1 ; i <= n ; i ++ ) v[i] = lower_bound(a + 1 , a + n + 1 , v[i]) - a;
for(i = 1 ; i <= n ; i ++ ) insert(v[i] , 1 , n , root[i - 1] , root[i]);
a[n + 1] = 1 << 30;
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d" , &x , &y) , ans = 1;
while((tmp = query(upper_bound(a + 1 , a + n + 2 , ans) - a - 1 , 1 , n , root[x - 1] , root[y])) >= ans)
ans = tmp + 1;
printf("%d\n" , ans);
}
return 0;
}

【bzoj4408】[Fjoi 2016]神秘数 主席树的更多相关文章

  1. BZOJ4408&4299[Fjoi 2016]神秘数——主席树

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  2. BZOJ 4408: [Fjoi 2016]神秘数 [主席树]

    传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...

  3. BZOJ 4408: [Fjoi 2016]神秘数 主席树 + 神题

    Code: #include<bits/stdc++.h> #define lson ls[x] #define mid ((l+r)>>1) #define rson rs[ ...

  4. [BZOJ4408][Fjoi 2016]神秘数

    [BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...

  5. 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题

    [BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...

  6. BZOJ4408: [Fjoi 2016]神秘数【主席树好题】

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = ...

  7. BZOJ4408 [Fjoi 2016]神秘数 【主席树】

    题目链接 BZOJ4408 题解 假如我们已经求出一个集合所能凑出连续数的最大区间\([1,max]\),那么此时答案为\(max + 1\) 那么我们此时加入一个数\(x\),假若\(x > ...

  8. bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...

  9. Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题

    4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 128[Submit][Status ...

随机推荐

  1. {ubuntu}不能挂载windows

    sudo apt-get install ntfs-3g sudo ntfsfix /dev/sda?

  2. Perl sendmail

    introduction of sendmail example send mail to multi-receiver

  3. 博客高亮代码及使用OpenLiveWriter修改之前博客

    简述:  最近查阅前辈资料的时候,看到写的博客很有条理,回头看下自己的乱做麻花,然后来时研究: 他们的代码看起来很漂亮然后我就查资料,在网页版上一直没法出来像他们的格式,后查资料看来的使用客户端工具才 ...

  4. 推荐一个免费的生成词云(word cloud)的在线工具

    "词云"这个概念由美国西北大学新闻学副教授.新媒体专业主任里奇·戈登(Rich Gordon)提出. "词云"就是对网络文本中出现频率较高的"关键词& ...

  5. iOS 查看包架构信息

    lipo -info libUMSocial_Sdk_4.2.a 查看包架构信息

  6. 2018_oakland_linuxmalware

    2018年oakland论文:理解linux恶意软件 论文地址:http://www.s3.eurecom.fr/~yanick/publications/2018_oakland_linuxmalw ...

  7. python基础一 day10(1)

    要背的:

  8. ios之UIActionSheet

    UIActionSheet是在IOS弹出的选择按钮项,可以添加多项,并为每项添加点击事件. 为了快速完成这例子,我们打开Xcode 4.3.2, 先建立一个single view applicatio ...

  9. clover如何使用UEFI引导和EFI驱动选择

    EFI分区实际上是一个FAT格式的分区,不一定要是第一个分区,GPT磁盘下任何一个FAT文件格式的分区都可以用来放EFI引导文件.主板UEFI先默认引导你所设置的第一优先启动分区下的\EFI\boot ...

  10. JS添加验证页面中script标签中是否存在jquery文件

    window.onload = function() { var al = document.getElementsByTagName("script"); var new_ele ...