bzoj3550
费用流+线性规划
搞了很长时间。。。
我们可以设立式子,a[1]+a[2]+a[3]+...+a[n]<=k , ... , a[2 * n + 1]+ ... +a[3*n]<=k
a是指该位有没有选
那么我们添加一个辅助变量f
a[1]+a[2]+a[3]+...+a[n]+f[1]=k,
...
a[2*n+1]+...+a[3*n]+f[2*n+1]=k
我们就得到了2n+1个式子
然后我们添加两个式子a(0):0=0 a(2*n+2):0=0
然后差分得到2n+2个式子,后一个式子减前一个式子
0:a[1]+a[2]+...+a[n]+f[1]=k
1:a[2]+...+a[n+1]+f[2]-a[1]-...-a[n]-f[1]=0->a[n+1]+f[2]-a[1]-f[1]=0
2:a[n+2]+f[3]-a[2]-f[2]=0
...
2n+1:a[3*n]+f[2*n+1]-a[2*n]-f[2*n]
2n+2:a[2n+1]+...+a[3*n]+f[2*n+1]=k
然后这个式子很像网络流的流量平衡,于是这样建图,正对负,负对正,因为第0项是a[1]+...+a[n],所以0->[1,n],因为都是这样形式的a[n+1]+f[2]-a[1]-f[1],-a[1]和+a[1]对应,因为a∈[0,1],所以流量为1,a[i]=1是指选了a[i],所以费用为a[i]
i-1->i,因为相邻两项-f[i],+f[i],f[i]∈[0,k],因为是辅助变量,所以什么都没有对应,流量为k,费用为0
后面类似 然后就建好图了 设立源汇和1n相连,流量为k 感觉理解不够深刻 碰见这种序列+限制的题可以用费用流做,先把限制代数化,然后-+连边,一般还会相邻的点之间连边,这样可以解决一些序列的问题,以后碰见再做
#include<bits/stdc++.h>
using namespace std;
const int N = , inf = 0x3f3f3f3f;
struct edge {
int nxt, to, f, c;
} e[N * ];
int n, m, k, source, sink, tot, cnt = , sum;
int a[N], head[N], d[N], pree[N], prev[N], vis[N], live[N], dead[N], day[N], c[N], l[N], p[N];
inline void link(int u, int v, int f, int c)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].f = f;
e[cnt].to = v;
e[cnt].c = c;
}
inline void insert(int u, int v, int f, int c)
{
link(u, v, f, c);
link(v, u, , -c);
}
bool spfa()
{
memset(d, -, sizeof(d));
d[source] = ;
queue<int> q;
q.push(source);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt) if(e[i].f && (d[e[i].to] < d[u] + e[i].c || d[e[i].to] == -))
{
pree[e[i].to] = i;
prev[e[i].to] = u;
d[e[i].to] = d[u] + e[i].c;
if(vis[e[i].to] == )
{
q.push(e[i].to);
vis[e[i].to] = ;
}
}
}
return d[sink] != -;
}
inline int Edmonds_Karp()
{
int ans = ;
while(spfa())
{
int now = sink, delta = inf;
while(now != source)
{
delta = min(delta, e[pree[now]].f);
now = prev[now];
}
now = sink;
while(now != source)
{
e[pree[now]].f -= delta;
e[pree[now] ^ ].f += delta;
now = prev[now];
}
ans += delta * d[sink];
}
return ans;
}
int main()
{
scanf("%d%d", &n, &k);
for(int i = ; i <= * n; ++i) scanf("%d", &a[i]);
source = * n + ;
sink = * n + ;
int s = , t = * n + ;
insert(source, s, k, );
insert(t, sink, k, );
sink = * n + ;
for(int i = ; i <= n; ++i) insert(s, i, , a[i]);
for(int i = ; i <= * n + ; ++i) insert(i - , i, k, );
for(int i = n + ; i <= * n; ++i) insert(i, t, , a[i + n]);
for(int i = n + ; i <= * n; ++i) insert(i - n, i, , a[i]); /* for(int i = 1; i <= 2 * n + 1; ++i) insert(i - 1, i, k, 0);
for(int i = 1; i <= n; ++i)
{
insert(s, i, 1, a[i]);
insert(i, i + n, 1, a[i + n]);
insert(i + n, t, 1, a[i + 2 * n]);
} */
printf("%d\n", Edmonds_Karp());
return ;
}
bzoj3550的更多相关文章
- BZOJ3550 [ONTAK2010]Vacation 【单纯形】
题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...
- BZOJ3550: [ONTAK2010]Vacation
3550: [ONTAK2010]Vacation Time Limit: 10 Sec Memory Limit: 96 MBSubmit: 91 Solved: 71[Submit][Stat ...
- bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)
传送门 直接暴力把线性规划矩阵给打出来然后单纯形求解就行了 简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件 然后不要忘记限制每个数 ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- [BZOJ3550] [Sdoi2014]数数
Description 我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串.例如当S=(22,333,0233)时,233是幸运数,2333.20233.3 ...
- 【Richard 的刷(水)题记录】
大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...
随机推荐
- maven deploy时报错
Failed to execute goal org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy (default-deploy) on p ...
- [LNOI2014]LCA(树链剖分)
BZOJ传送门 Luogu传送门 题目:给你一棵树,给你n个询问,每个询问要求输出$\sum_{i=l}^{r}depth(LCA(i,z))$ 细看看其实没有想象的那么难 大体思路: 1.对于每个询 ...
- try catch影响Spring事务吗?
对于这个问题有两种情况: 1.catch只打印异常,不抛出异常 try { 数据库做添加订单表; /; 数据库减少库存; }catch (Exception e){ e.printStackTrace ...
- python3.x Day3 文件编码
文件编码: 知识点不多,但及其重要,python2和python3处理机制还有不同点,需要注意. 首先: 编码.数据类型,完全不同的概念. 文件编码:可以遵循开发环境.可以自行设定. 变量值编码:py ...
- gnulpot
gnulpot Table of Contents 1. Label position 2. coordinates 3. Symbols 4. key 4.1. key position 4.2. ...
- 高德地图将字符串地址转为经纬度的一个demo
<!doctype html> <html> <head> <meta charset="utf-8"> <meta http ...
- 【模板】51nod 1051 最大子矩阵和
[题解] 二重循环枚举起始列和终止列,竖着往下加,转化为一个最大子段和问题,逐行累加即可. #include<cstdio> #include<cstring> #includ ...
- atCoder Ants on a Circle(又是蚂蚁问题。。。)
atCoder Ants on a Circle(又是蚂蚁问题...) 传送门 题意:一个圈,蚂蚁在上面以相同的速度和不同的方向走,问t秒后它们各自的位置. 解法:和经典的蚂蚁问题一致,把相撞的情况看 ...
- [linux]centos7下解决yum install mysql-server没有可用包
第一步:安装从网上下载文件的wget命令 [root@master ~]# yum -y install wget 第二步:下载mysql的repo源 [root@master ~]# wget ht ...
- 【codeforces 707C】Pythagorean Triples
[题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...