BZOJ_4184_shallot_线段树按时间分治维护线性基
BZOJ_4184_shallot_线段树按时间分治维护线性基
Description
小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏。
Input
第一行一个正整数n表示总时间;第二行n个整数a1,a2...an,若ai大于0代表给了小葱一颗数字为ai的小葱苗,否则代表从小葱手中拿走一颗数字为-ai的小葱苗。
Output
输出共n行,每行一个整数代表第i个时刻的最大异或和。
Sample Input
1 2 3 4 -2 -3
Sample Output
3
3
7
7
5
HINT
N<=500000,Ai<=2^31-1
感觉学到一个有用的东西。
有些问题支持插入但不支持删除或者支持删除但不支持插入。
这时我们可以发现每个元素在时间轴上都出现了一段区间,然后这个区间用线段树来维护。
比如这道题,我们知道线性基支持O(logn)的插入但不支持快速删除一个元素。
于是线段树每个节点维护一颗线性基。
我们可以求出每个数出现的区间,把这段区间在线段树上对应的log个节点插入这个数。
最后dfs一遍线段树,每次暴力pushdown,每个叶子就对应着这一个时间点的答案。
这样空间复杂度是O(4nlogn)的,过不去。
线段树每个节点没必要真开出来一个线性基,在下传的时候加一个线性基的参数即可。
这样意味着我们区间修改时不能直接插入,可以先用vector存下每个节点对应要插哪些数。
然后再把标记下传,这样空间是vector的O(nlogn),可过。
本题数据保证不会出现形如A....A....-A....-A的情况,于是求每个数对应的区间可以直接用map求。
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;
#define N 500050
#define ls p<<1
#define rs p<<1|1
map<int,int>mp;
vector<int>v[N<<2];
struct LB {
int b[31];
LB() {memset(b,0,sizeof(b));}
void insert(int x) {
int i;
for(i=30;i>=0;i--) if(x&(1<<i)) {
if(b[i]) x^=b[i];
else {
b[i]=x; return ;
}
}
}
int query() {
int ans=0,i;
for(i=30;i>=0;i--) {
if(b[i]) ans=max(ans,b[i]^ans);
}
return ans;
}
};
int n,ans[N],a[N];
void update(int l,int r,int x,int y,int va,int p) {
if(x<=l&&y>=r) {v[p].push_back(va); return ;}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,va,ls);
if(y>mid) update(mid+1,r,x,y,va,rs);
}
void solve(int l,int r,int p,LB t) {
int i,lim=v[p].size();
for(i=0;i<lim;i++) {
t.insert(v[p][i]);
}
if(l==r) {
ans[l]=t.query(); return ;
}
int mid=(l+r)>>1;
solve(l,mid,ls,t);
solve(mid+1,r,rs,t);
}
int main() {
scanf("%d",&n);
int i,x;
for(i=1;i<=n;i++) {
scanf("%d",&a[i]);
if(a[i]>0) mp[a[i]]=i;
else update(1,n,mp[-a[i]],i-1,-a[i],1),mp[-a[i]]=0;
}
for(i=1;i<=n;i++) {
if(a[i]>0&&mp[a[i]]) update(1,n,mp[a[i]],n,a[i],1);
}
LB base; memset(base.b,0,sizeof(base));
solve(1,n,1,base);
for(i=1;i<=n;i++) printf("%d\n",ans[i]);
}
BZOJ_4184_shallot_线段树按时间分治维护线性基的更多相关文章
- 【BZOJ-4184 】 Shallot 线段树按时间分治 + 线性基
4184: shallot Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 356 Solved: 180[Submit][Status][Discu ...
- 【bzoj4311】向量 线段树对时间分治+STL-vector维护凸包
题目描述 你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 3.查询当前集合与(x,y)点积的最大值是多少.如果当前是空集输出0 输入 第一行输入一个整数n, ...
- BZOJ_4311_向量_线段树按时间分治
BZOJ_4311_向量_CDQ分治+线段树按时间分治 Description 你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 3.查询当前集合与(x,y) ...
- Bipartite Checking CodeForces - 813F (线段树按时间分治)
大意: 动态添边, 询问是否是二分图. 算是个线段树按时间分治入门题, 并查集维护每个点到根的奇偶性即可. #include <iostream> #include <sstream ...
- 【CF576E】Painting Edges 线段树按时间分治+并查集
[CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...
- BZOJ_4025_二分图_线段树按时间分治+并查集
BZOJ_4025_二分图_线段树按时间分治+并查集 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简 ...
- 【BZOJ4184】shallot(线段树分治,线性基)
[BZOJ4184]shallot(线段树分治,线性基) 题面 权限题啊.....好烦.. Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把 ...
- bzoj 4184: shallot (线段树维护线性基)
题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...
- 【bzoj4184】shallot 线段树+高斯消元动态维护线性基
题目描述 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱从自己手中的小 ...
随机推荐
- PHP文件属性相关函数
<meta charset= "utf-8"><?php //获取文件属性的函数 function getFilePro($filename) { //检测文件是 ...
- express 写接口
实例下载:百度云盘免密码 (): 指注释 一.准备工作 1.安装express npm install express -g npm install express-generator -g 2.初始 ...
- zoj4027 Sequence Swapping
首先容易想到二维方程dp(i,j),表示第i个左括号去匹配到第j个右括号时产生的最大值,但如果如此表示的话,首先需要枚举(i,j)以及一个k即dp(i-1,k). 考虑变化dp(i,j)的表示方法,可 ...
- 实现浏览器兼容的innerText
今天学习到了FF不支持innerText,而IE.chrome.Safari.opera均支持innerText. 为了各个浏览器能兼容innerText,必须对js做一次封装. 为啥能实现兼容呢?原 ...
- [Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)
3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2350 Solved: 1212[Submit][Sta ...
- Tomcat错误信息(服务器版本号)泄露(低危)
一.问题描述Tomcat报错页面泄漏Apache Tomcat/7.0.52相关版本号信息,是攻击者攻击的途径之一.因此实际当中建议去掉版本号信息. 二.解决办法 1.进入到tomcat/lib目录下 ...
- win10安装mysql5.6,mysql启动时,闪退
首先在服务中查看是不是mysql启动了 发现在服务中没有mysql服务, 然后找到mysql的安装目录 MYSQL SERVER 5.6 中将my-default.ini 改为my.ini 使用命令行 ...
- Spring的AOP AspectJ切入点语法详解(转)
一.Spring AOP支持的AspectJ切入点指示符 切入点指示符用来指示切入点表达式目的,在Spring AOP中目前只有执行方法这一个连接点,Spring AOP支持的AspectJ切入点指示 ...
- LINUX下安装和配置WEBLOGIC10.0.3
weblogic for linux安装 首先声明,我参考了某位原创者的笔记,加以整理的.安装1. 安装前的准备工作1.1 首先请确认您要安装的Weblogic版本所在的平台已通过了BEA的认证,完整 ...
- HDU1087 Super Jumping! Jumping! Jumping!(LIS)
题目意思: http://acm.hdu.edu.cn/showproblem.php? pid=1087 此题的意思求最长上升子序列的和. 题目分析: 在求最长上升子序列的时候,不在保存最长的个数, ...