splay和不加任何旋转一定会被卡的二叉搜索树的唯一区别就是每次操作把当前节点旋转到根。

旋转有各种zig、zag的组合方式,感觉很麻烦,并不对劲的人并不想讲。

其实可以找出一些共性将它们合并。设ls(a)=[点a是其父亲的左儿子],son[a][0]=a的左儿子,son[a][1]=a的右儿子,fa[a]=a的父亲。会发现单旋u时,有变动的点只有son[u][ls(u)^1],u,fa[u],fa[fa[u]]。再仔细想想,儿子有变动的有fa[fa[u]](son[fa[fa[u]]][ls(fa[u])]=u)、fa[u](son[fa[u]][ls(u)]=son[u][ls(u)^1])、u(son[u][ls(u)^1]=fa[u]),父亲有变化的是fa[u](fa[fa[u]]=u)、u(fa[u]=fa[fa[u]])、son[u][ls(u)^1](fa[son[u][ls(u)^1]=fa[u])。都有三组,好记(可能吧…)又好写。

而当双旋u时,若u,fa[u],fa[fa[u]]不共线(即ls(u)^ls(fa[u])==1),则先单旋u,再单旋u;反之,则先单旋fa[u],再单旋u。每次旋转如果深度不小于2就双旋,否则单旋。这样写起来就会很容易了。

根据刚刚的旋转方法,可以看出每次被旋转到根的节点至多经历一次单旋。

至于时间复杂度,在刚学splay时就觉得它很不靠谱,因为感觉每次把某个节点旋转到根并不能缩短多少时间。后来发现每次操作总会进行很多次双旋,双旋总能让这个树变的和你想象中不太一样。

至于严格证明什么的,还是交给手健康的人手推吧,这里并不是对劲的splay。

例题:洛谷2286 [HNOI2004]宠物收养场

并不觉得这题有什么好说的。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<iomanip>
#include<cstdlib>
#define maxn 80001
#define inf 1ll<<32
#define mod 1000000
#define ll long long
using namespace std;
ll read(){
ll x=,f=;
char ch=getchar();
while(isdigit(ch)== && ch!='-')ch=getchar();
if(ch=='-')f=-;
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
ll n,f;
ll ans;
typedef struct node
{
ll son[],fa;//0左,1右
ll key;
}Tree;
struct Splay
{
ll cnt,root;
Tree x[maxn];
inline void rot(ll u){
ll fu=x[u].fa,ffu=x[fu].fa,l=(x[fu].son[]==u),r=l^;
ll l2=(fu==x[ffu].son[]);
x[ffu].son[l2]=u;
x[u].fa=ffu;
x[fu].fa=u;
x[fu].son[l]=x[u].son[r];
x[x[u].son[r]].fa=fu;
x[u].son[r]=fu;
}
inline void splay(ll u,ll k){
while(x[u].fa!=k){
ll fu=x[u].fa,ffu=x[fu].fa;
if(ffu!=k){
if((x[ffu].son[]==x[u].fa)^(x[fu].son[]==u))
rot(u);
else rot(fu);
}
rot(u);
}
if(k==)root=u;
}
inline void ins(ll k){
ll lk=nxt_no_equ(k,),
rk=nxt_no_equ(k,);
splay(lk,),splay(rk,lk);
x[rk].son[]=++cnt;
x[cnt].fa=rk,x[cnt].son[]=x[cnt].son[]=,x[cnt].key=k;
splay(cnt,);
}
inline void fnd(ll k){
ll u=root;
if(u==)return;
while(x[u].son[k>x[u].key] && k!=x[u].key)
u=x[u].son[k>x[u].key];
splay(u,);
}
inline ll nxt_no_equ(ll k,ll f){//f==1 bigger
fnd(k);
ll u=root;
if(x[u].key>k && f)return u;
if(x[u].key<k && f==)return u;
u=x[u].son[f];
while(x[u].son[f^])u=x[u].son[f^];
return u;
}
inline ll nxt_yes_equ(ll k,ll f){
fnd(k);
ll u=root;
if(x[u].key>=k && f)return u;
if(x[u].key<=k && f==)return u;
u=x[u].son[f];
while(x[u].son[f^])u=x[u].son[f^];
return u;
}
inline void del(ll k){
ll lk=nxt_no_equ(k,),
rk=nxt_no_equ(k,);
splay(lk,),splay(rk,lk);
x[rk].son[]=;
}
void start(){
cnt=;
root=;
ins(inf);ins(-inf);
}
}t;
int main()
{
n=read();
t.start();
for(ll i=;i<=n;i++)
{// x,f=0 pet , x,f=1 people
ll x=read(),y=read();
if(f==){
t.ins(y);
}
else{
if(x==(f<))t.ins(y);
else{
ll lt=t.x[t.nxt_no_equ(y,)].key,
rt=t.x[t.nxt_no_equ(y,)].key,
ttt=abs(lt-y)<=abs(rt-y)?lt:rt;
ans+=abs(ttt-y);
t.del(ttt);
}
}
f+=(x==)?-:;
ans%=mod;
}
cout<<ans%mod;
return ;
}

并不对劲的splay

并不对劲的splay的更多相关文章

  1. 并不对劲的bzoj1861: [Zjoi2006]Book 书架

    传送门-> 这题的正确做法是splay维护这摞书. 但是并不对劲的人选择了暴力(皮这一下很开心). #include<algorithm> #include<cmath> ...

  2. 并不对劲的bzoj1500: [NOI2005]维修数列

    传送门-> 这题没什么好说的……小清新数据结构题……并不对劲的人太菜了,之前照着标程逐行比对才过了这道题,前几天刚刚把这题一遍写对…… 其实这题应该口胡很容易.操作1,2,3,4,5就是普通的s ...

  3. 并不对劲的fhq treap

    听说很对劲的太刀流不止会splay一种平衡树,并不对劲的片手流为了反驳他,并与之针锋相对,决定学学高端操作. 很对劲的太刀流-> 据说splay常数极大,但是由于只知道splay一种平衡树能对序 ...

  4. 并不对劲的LCT

    LCT,是连猫树(link-cat-tree)的缩写.它是树链剖分和splay的结合版本. 由于有很多关于LCT的文章以及这并不是对劲的文章,并不对劲的人并不打算讲得太详细. 推荐:详细的LCT-&g ...

  5. BZOJ 1251: 序列终结者 [splay]

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3778  Solved: 1583[Submit][Status][Discu ...

  6. [bzoj1269][AHOI2006文本编辑器editor] (splay模版题 or pb_ds [rope]大法)

    Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目标,可可对“文本编辑器”做了一个抽象的定义:   文本:由0个或 ...

  7. splay最终模板

    来自wjmzbmr的splay模板 #include<cstdio> #include<iostream> #include<algorithm> using na ...

  8. bzoj 3506 && bzoj 1552 splay

    查最小值,删除,翻转... 显然splay啊... #include<iostream> #include<cstdio> #include<algorithm> ...

  9. 【splay】文艺平衡树 BZOJ 3223

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3  ...

随机推荐

  1. [codeforces724D]Dense Subsequence

    [codeforces724D]Dense Subsequence 试题描述 You are given a string s, consisting of lowercase English let ...

  2. Vijos1655 - 萌萌的糖果博弈

    Portal Description 两人轮流操作两堆初始数量分别为\(a,b(a,b\leq2^{127})\)的石子.每人每次进行如下操作: 取走一堆石子,并将另一堆分成两个非零堆. 如果另一堆只 ...

  3. 【判连通】HDU 6113 度度熊的01世界

    http://acm.hdu.edu.cn/showproblem.php?pid=6113 [题意] 度度熊是一个喜欢计算机的孩子,在计算机的世界中,所有事物实际上都只由0和1组成. 现在给你一个n ...

  4. hdu 2736 Average distance

    传送门 Average distance Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  5. hdu 1728 逃离迷宫 [ dfs ]

    传送门 逃离迷宫 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. EsAlert

    https://www.cnblogs.com/zhaishaomin/p/7417306.html https://blog.csdn.net/pujiaolin/article/details/5 ...

  7. GOF 23种设计模式目录

    经典的gof 23种设计模式,目录大纲查看. 1. Singleton(单例模式) 保证一个类只有一个实例,并提供访问它的全局访问点. 2. Abstract Factory(抽象工厂模式) 提供一个 ...

  8. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  9. POJ 3254 【状态压缩DP】

    题意: 给一块n*m的田地,1代表肥沃,0代表贫瘠. 现在要求在肥沃的土地上种草,要求任何两个草都不能相邻. 问一共有多少种种草的方法. 种0棵草也是其中的一种方法. n和m都不大于12. 思路: 状 ...

  10. java的异常与记录日志

    今天在<java编程思想>一书中看到了异常与记录日志,发现学会将异常记录进日志中还是很有必要的,以下是书中的例子: import java.io.PrintWriter; import j ...