splay和不加任何旋转一定会被卡的二叉搜索树的唯一区别就是每次操作把当前节点旋转到根。

旋转有各种zig、zag的组合方式,感觉很麻烦,并不对劲的人并不想讲。

其实可以找出一些共性将它们合并。设ls(a)=[点a是其父亲的左儿子],son[a][0]=a的左儿子,son[a][1]=a的右儿子,fa[a]=a的父亲。会发现单旋u时,有变动的点只有son[u][ls(u)^1],u,fa[u],fa[fa[u]]。再仔细想想,儿子有变动的有fa[fa[u]](son[fa[fa[u]]][ls(fa[u])]=u)、fa[u](son[fa[u]][ls(u)]=son[u][ls(u)^1])、u(son[u][ls(u)^1]=fa[u]),父亲有变化的是fa[u](fa[fa[u]]=u)、u(fa[u]=fa[fa[u]])、son[u][ls(u)^1](fa[son[u][ls(u)^1]=fa[u])。都有三组,好记(可能吧…)又好写。

而当双旋u时,若u,fa[u],fa[fa[u]]不共线(即ls(u)^ls(fa[u])==1),则先单旋u,再单旋u;反之,则先单旋fa[u],再单旋u。每次旋转如果深度不小于2就双旋,否则单旋。这样写起来就会很容易了。

根据刚刚的旋转方法,可以看出每次被旋转到根的节点至多经历一次单旋。

至于时间复杂度,在刚学splay时就觉得它很不靠谱,因为感觉每次把某个节点旋转到根并不能缩短多少时间。后来发现每次操作总会进行很多次双旋,双旋总能让这个树变的和你想象中不太一样。

至于严格证明什么的,还是交给手健康的人手推吧,这里并不是对劲的splay。

例题:洛谷2286 [HNOI2004]宠物收养场

并不觉得这题有什么好说的。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<iomanip>
#include<cstdlib>
#define maxn 80001
#define inf 1ll<<32
#define mod 1000000
#define ll long long
using namespace std;
ll read(){
ll x=,f=;
char ch=getchar();
while(isdigit(ch)== && ch!='-')ch=getchar();
if(ch=='-')f=-;
while(isdigit(ch))x=x*+ch-'',ch=getchar();
return x*f;
}
ll n,f;
ll ans;
typedef struct node
{
ll son[],fa;//0左,1右
ll key;
}Tree;
struct Splay
{
ll cnt,root;
Tree x[maxn];
inline void rot(ll u){
ll fu=x[u].fa,ffu=x[fu].fa,l=(x[fu].son[]==u),r=l^;
ll l2=(fu==x[ffu].son[]);
x[ffu].son[l2]=u;
x[u].fa=ffu;
x[fu].fa=u;
x[fu].son[l]=x[u].son[r];
x[x[u].son[r]].fa=fu;
x[u].son[r]=fu;
}
inline void splay(ll u,ll k){
while(x[u].fa!=k){
ll fu=x[u].fa,ffu=x[fu].fa;
if(ffu!=k){
if((x[ffu].son[]==x[u].fa)^(x[fu].son[]==u))
rot(u);
else rot(fu);
}
rot(u);
}
if(k==)root=u;
}
inline void ins(ll k){
ll lk=nxt_no_equ(k,),
rk=nxt_no_equ(k,);
splay(lk,),splay(rk,lk);
x[rk].son[]=++cnt;
x[cnt].fa=rk,x[cnt].son[]=x[cnt].son[]=,x[cnt].key=k;
splay(cnt,);
}
inline void fnd(ll k){
ll u=root;
if(u==)return;
while(x[u].son[k>x[u].key] && k!=x[u].key)
u=x[u].son[k>x[u].key];
splay(u,);
}
inline ll nxt_no_equ(ll k,ll f){//f==1 bigger
fnd(k);
ll u=root;
if(x[u].key>k && f)return u;
if(x[u].key<k && f==)return u;
u=x[u].son[f];
while(x[u].son[f^])u=x[u].son[f^];
return u;
}
inline ll nxt_yes_equ(ll k,ll f){
fnd(k);
ll u=root;
if(x[u].key>=k && f)return u;
if(x[u].key<=k && f==)return u;
u=x[u].son[f];
while(x[u].son[f^])u=x[u].son[f^];
return u;
}
inline void del(ll k){
ll lk=nxt_no_equ(k,),
rk=nxt_no_equ(k,);
splay(lk,),splay(rk,lk);
x[rk].son[]=;
}
void start(){
cnt=;
root=;
ins(inf);ins(-inf);
}
}t;
int main()
{
n=read();
t.start();
for(ll i=;i<=n;i++)
{// x,f=0 pet , x,f=1 people
ll x=read(),y=read();
if(f==){
t.ins(y);
}
else{
if(x==(f<))t.ins(y);
else{
ll lt=t.x[t.nxt_no_equ(y,)].key,
rt=t.x[t.nxt_no_equ(y,)].key,
ttt=abs(lt-y)<=abs(rt-y)?lt:rt;
ans+=abs(ttt-y);
t.del(ttt);
}
}
f+=(x==)?-:;
ans%=mod;
}
cout<<ans%mod;
return ;
}

并不对劲的splay

并不对劲的splay的更多相关文章

  1. 并不对劲的bzoj1861: [Zjoi2006]Book 书架

    传送门-> 这题的正确做法是splay维护这摞书. 但是并不对劲的人选择了暴力(皮这一下很开心). #include<algorithm> #include<cmath> ...

  2. 并不对劲的bzoj1500: [NOI2005]维修数列

    传送门-> 这题没什么好说的……小清新数据结构题……并不对劲的人太菜了,之前照着标程逐行比对才过了这道题,前几天刚刚把这题一遍写对…… 其实这题应该口胡很容易.操作1,2,3,4,5就是普通的s ...

  3. 并不对劲的fhq treap

    听说很对劲的太刀流不止会splay一种平衡树,并不对劲的片手流为了反驳他,并与之针锋相对,决定学学高端操作. 很对劲的太刀流-> 据说splay常数极大,但是由于只知道splay一种平衡树能对序 ...

  4. 并不对劲的LCT

    LCT,是连猫树(link-cat-tree)的缩写.它是树链剖分和splay的结合版本. 由于有很多关于LCT的文章以及这并不是对劲的文章,并不对劲的人并不打算讲得太详细. 推荐:详细的LCT-&g ...

  5. BZOJ 1251: 序列终结者 [splay]

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3778  Solved: 1583[Submit][Status][Discu ...

  6. [bzoj1269][AHOI2006文本编辑器editor] (splay模版题 or pb_ds [rope]大法)

    Description 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目标,可可对“文本编辑器”做了一个抽象的定义:   文本:由0个或 ...

  7. splay最终模板

    来自wjmzbmr的splay模板 #include<cstdio> #include<iostream> #include<algorithm> using na ...

  8. bzoj 3506 && bzoj 1552 splay

    查最小值,删除,翻转... 显然splay啊... #include<iostream> #include<cstdio> #include<algorithm> ...

  9. 【splay】文艺平衡树 BZOJ 3223

    Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3  ...

随机推荐

  1. python006 Python3 运算符

    Python3 运算符什么是运算符?本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符.Python语言 ...

  2. springcloud了解

    学习springcloud 文章标题:[置顶] 史上最简单的 SpringCloud 教程 | 终章 学习地址:http://blog.csdn.net/forezp/article/details/ ...

  3. HackerRank# The Coin Change Problem

    原题地址 背包问题,没啥好说的,记得用long long,否则会爆 代码: #include <cmath> #include <cstdio> #include <ve ...

  4. Flex里监听mouseDownOutside事件解决弹出窗口点击空白关闭功能

    其实当用户在使用 PopUpManager 打开的某个组件外部单击时,会从该组件分派一个mouseDownOutside事件 监听该事件就能实现点击空白处关闭窗口的功能 this.addEventLi ...

  5. 进程Queue、线程Queue、堆栈、生产者消费者模型

    没学队列之前,可以用文件实现进程之间通信 但是有2个问题: 1. 速度慢:文件是保存在硬盘空间 2. 为了数据安全要加锁(处理锁是一件很麻烦的事,容易死锁,建议自己轻易不要处理锁) 队列:队列是基于管 ...

  6. iOS textView在调用textViewDidChange方法,中文输入的问题

    有时候,需要在textViewDidChange处理时,在中文输入的情况下,例如输入“中”,对应的拼音“zhong”, 在textViewDidChange的方法里会把拼音也算进去:导致输入中文时也输 ...

  7. Codeforces 660C Hard Process【二分 Or 尺取】

    题目链接: http://codeforces.com/problemset/problem/660/C 题意: 给定0.1组成的数组,可以改变k个0使其为1,问最终可以得到的连续的1的最大长度. 分 ...

  8. MD5加密Java工具类

    原文:http://www.open-open.com/code/view/1421764946296 import java.security.MessageDigest; public class ...

  9. FIREDAC保存ORACLE的BLOB字段数据

     FIREDAC默认识别ORACLE的BLOB字段为HUGEBLOB,需要将HBLOB映射为BLOB,才可以保存ORACLE的BLOB字段的数据.

  10. window环境下搭建SVN服务器

    <span style="font-family: Arial; rgb(255, 255, 255);">第一步:准备工具:</span> 1.SVN服务 ...