【模式识别与机器学习】——3.5Fisher线性判别
---恢复内容开始---
出发点
应用统计方法解决模式识别问题时,一再碰到的问题之一就是维数问题。 在低维空间里解析上或计算上行得通的方法,在高维空间里往往行不通。 因此,降低维数有时就会成为处理实际问题的关键。
问题描述
考虑把d维空间的样本投影到一条直线上,形成一维空间,即把维数压缩到一维。
然而,即使样本在d维空间里形成若干紧凑的互相分得开的集群,当把它们投影到一条直线上时,也可能会是几类样本混在一起而变得无法识别。
但是,在一般情况下,总可以找到某个方向,使在这个方向的直线上,样本的投影能分得开。
问题:如何根据实际情况找到一条最好的、最易于分类的投影线,这就是Fisher判别方法所要解决的基本问题。
从d维空间到一维空间的一般数学变换方法
Fisher准则函数的定义
(1)几个必要的基本参量
我们希望投影后,在一维Y空间中各类样本尽可能分得开些,即希望两类均值之差越大越好,同时希望各类样本内部尽量密集,即希望类内离散度越小越好。
(2)Fisher准则函数
(3)最佳变换向量W*的求取
先修知识:Lagrange乘数法
最佳变换向量的求取
基于最佳变换向量w*的投影
w*是使Fisher准则函数JF(w)取极大值时的解,也就是d维X空间到一维Y空间的最佳投影方向。有了w*,就可以把d维样本x投影到一维,这实际上是多维空间到一维空间的一种映射,这个一维空间的方向w*相对于Fisher准则函数JF(w)是最好的。 利用Fisher准则,就可以将d维分类问题转化为一维分类问题,然后,只要确定一个阈值T,将投影点yn与T相比较,即可进行分类判别。
【模式识别与机器学习】——3.5Fisher线性判别的更多相关文章
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
- Bishop的大作《模式识别与机器学习》Ready to read!
久仰Bishop的大作“Pattern Recognition and Machine Learning”已久,在我的硬盘里已经驻扎一年有余,怎奈惧其页数浩瀚,始终未敢入手.近日看文献,屡屡引用之.不 ...
- 【线性判别】Fisher线性判别(转)
今天读paper遇到了Fisher线性判别的变体, 所以来学习一下, 所以到时候一定要把PRMl刷一遍呀 以下两篇论文一起阅读比较好: 论文1: https://blog.csdn.net/Rainb ...
- 今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写 ...
- paper 95:《模式识别和机器学习》资源
Bishop的<模式识别和机器学习>是该领域的经典教材,本文搜罗了有关的教程和读书笔记,供对比学习之用,主要搜索的资源包括CSDN:http://download.csdn.net/sea ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- LDA(线性判别分类器)学习笔记
Linear Discriminant Analysis(线性判别分类器)是对费舍尔的线性鉴别方法(FLD)的归纳,属于监督学习的方法. LDA的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达 ...
- 模式识别之线性判别---naive bayes朴素贝叶斯代码实现
http://blog.csdn.net/xceman1997/article/details/7955349 http://www.cnblogs.com/yuyang-DataAnalysis/a ...
随机推荐
- matlab中的静态变量与全局变量
matlab中的静态变量和全局变量 1.静态变量 在matlab中,和其他语言一样,函数中的变量一把都是局部变量,也就是说,在函数调用完毕后,变量就会被释放.但是有些时候回希望上次改变的变量在下一次调 ...
- redis必知会
Redis 是单进程单线程的? Redis 是单进程单线程的,redis 利用队列技术将并发访问变为串行访问,消 除了传统数据库串行控制的开销. Redis 的持久化机制是什么?各自的优缺点? Red ...
- nexus 安装与启动(windows本版)
1.下载 https://www.sonatype.com/download-oss-sonatype 本人云盘:https://pan.baidu.com/s/1_Qmhzij0TlOmTGT-eb ...
- JavaWeb基础(day15)( http + tomcat + servlet + 响应)
HTTP+Tomcat+Servlet+响应 HTTP HTTP 超文本传输协议(Hyper Text Transfer Protocol ),一种网络协议. 协议的组成和过程 HTTP协议由 ...
- Email正则表达式验证
在做邮箱验证的时候,进行简单的整理: string emailStr = @"/^([a-zA-Z0-9_-])+@([a-zA-Z0-9_-])+((\.[a-zA-Z0-9_-]{2,3 ...
- Python基础点记录1
1 变量:一个变量就是一个单词,只有一个单一的值 1 Python里面的数据类型 interage , floats , booleans , String等 2 Python是一个区分大小写的语言 ...
- Oracle可视化工具连接
Oracle可是化工具有很多,以下只列举sql developer和sql plus这两款连接方式 sql developer: SQL Develope启动后,需要创建一个数据库连接,只有创建了数据 ...
- Windows 下Java JDK的下载与安装
前言: 因为本机已经配置完毕了,本次使用的是虚拟机中的Win7系统,Win10系统操作步骤基本完全一样,不同的地方会在下面的步骤中指出. 一.JDK的下载 为了计算机安全,我们首先要做到的就是尽量在官 ...
- React Navigation / React Native Navigation 多种类型的导航结合使用,构造合理回退栈
React Navigation 更新到版本5已经是非常完善的一套导航管理组件, 提供了Stack , Tab , Drawer 导航方式 , 那么我们应该怎样设计和组合应用他们来构建一个完美的回退栈 ...
- mysql字符集 utf8 和utf8mb4 的区别
一.导读我们新建mysql数据库的时候,需要指定数据库的字符集,一般我们都是选择utf8这个字符集,但是还会又一个utf8mb4这个字符集,好像和utf8有联系,今天就来解析一下这两者的区别. 二.起 ...