题目详情

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列,找到 A 中最长的斐波那契式的子序列的长度。如果一个不存在,返回  0 。

(回想一下,子序列是从原序列 A 中派生出来的,它从 A 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8] 是 [3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: [1,2,3,4,5,6,7,8]
输出: 5
解释:
最长的斐波那契式子序列为:[1,2,3,5,8] 。

示例 2:

输入: [1,3,7,11,12,14,18]
输出: 3
解释:
最长的斐波那契式子序列有:
[1,11,12],[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= A.length <= 1000
  • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
  • (对于以 Java,C,C++,以及 C# 的提交,时间限制被减少了 50%)

题目解析

AC代码

class Solution {
public:
int lenLongestFibSubseq(vector<int>& A) {
int len = A.size();
unordered_map<int,int> dict;
for(int i=0;i<len;i++){
dict[A[i]] = i;
}
vector<vector<int>> store(len,vector<int>(len,2));
int ans = 0;
for(int i=0;i<len;i++){
for(int j=i+1;j<len;j++){
int sum = A[i] + A[j];
if(dict.find(sum)!=dict.end()){
store[j][dict[sum]] = store[i][j] + 1;
if(store[j][dict[sum]] > ans){
ans = store[j][dict[sum]];
}
}
}
}
return ans; }
};

LeetCode 873. 最长的斐波那契子序列的长度 题目详解的更多相关文章

  1. [Swift]LeetCode873. 最长的斐波那契子序列的长度 | Length of Longest Fibonacci Subsequence

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  2. 斐波那契堆(Fibonacci heap)原理详解(附java代码实现)

    前言 斐波那契堆(Fibonacci heap)是计算机科学中最小堆有序树的集合.它和二项式堆有类似的性质,但比二项式堆有更好的均摊时间.堆的名字来源于斐波那契数,它常用于分析运行时间. 堆结构介绍 ...

  3. [LeetCode] 70. Climbing Stairs(斐波那契数列)

    [思路] a.因为两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1); b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2) c.由a.b ...

  4. [LeetCode] Length of Longest Fibonacci Subsequence 最长的斐波那契序列长度

    A sequence X_1, X_2, ..., X_n is fibonacci-like if: n >= 3 X_i + X_{i+1} = X_{i+2} for all i + 2 ...

  5. 最长斐波那契序列-LeetCode-873

    英文版A sequence X_1, X_2, ..., X_n is fibonacci-like if: - n >= 3- X_i + X_{i+1} = X_{i+2} for all ...

  6. hdu 2044:一只小蜜蜂...(水题,斐波那契数列)

    一只小蜜蜂... Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepte ...

  7. 剑指offer——矩阵覆盖(斐波那契变形)

    ****感觉都可以针对斐波那契写一个变形题目的集合了****** 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? cl ...

  8. 《剑指offer》斐波那契数列

    本题来自<剑指offer> 斐波那契数列 矩阵覆盖 题目一: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).n<=39 思路: ...

  9. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

随机推荐

  1. CodeForces - 722C Destroying Array (并查集/集合的插入和删除)

    原题链接:https://vjudge.net/problem/511814/origin Description: You are given an array consisting of n no ...

  2. 中介者模式(c++实现)

    中介者模式 目录 中介者模式 模式定义 模式动机 UML类图 源码实现 优点 缺点 模式定义 中介者模式(Mediator),用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显示地相互引用, ...

  3. CppUnit使用和源码解析

    前言 CppUnit是一个开源的单元测试框架,支持Linux和Windows操作系统,在linux上可以直接进行源码编译,得到动态库和静态库,直接链接就可以正常使用,在Windows上可以使用VC直接 ...

  4. 深入理解 EF Core:使用查询过滤器实现数据软删除

    原文:https://bit.ly/2Cy3J5f 作者:Jon P Smith 翻译:王亮 声明:我翻译技术文章不是逐句翻译的,而是根据我自己的理解来表述的.其中可能会去除一些本人实在不知道如何组织 ...

  5. 程序员每日一乐:html动态烟花设计 3D

    3D版烟花 效果图:file:///C:/Users/QianXin/Desktop/3D%E7%83%9F%E8%8A%B1.html 经过一天的的工作或者学习是否感到枯燥乏味?现在的你是否想找些乐 ...

  6. vue------反响代理

    //测试项目 https://i.cnblogs.com/Files.aspx

  7. 附002.Nginx代理相关模块解析

    一 ngx_http_proxy_module模块 1.1 proxy_pass配置 proxy_pass URL; Context: location, if in location, limit_ ...

  8. MyBatis----resultMap的使用

  9. Python获取当前时间_获取格式化时间_格式化日期

    Python获取当前时间_获取格式化时间: Python获取当前时间: 使用 time.time( ) 获取到距离1970年1月1日的秒数(浮点数),然后传递给 localtime 获取当前时间 #使 ...

  10. Tkinter常用简单操作

        截图来自北京尚学堂 手册:http://effbot.org/tkinterbook/ 2020-04-20