深度强化学习:Policy-Based methods、Actor-Critic以及DDPG
Policy-Based methods
在上篇文章中介绍的Deep Q-Learning算法属于基于价值(Value-Based)的方法,即估计最优的action-value function $q_*(s,a)$,再从$q_*(s,a)$中导出最优的策略$\pi_*$(e.g., $\epsilon$-greedy)。但是有没有方法能不经过中间过程,直接对最优策略进行估计呢?这样做又有什么好处呢?该部分要介绍的就是这类方法,即基于策略(Policy-Based)的方法。下面先介绍一下这类方法的好处:
- 能够处理连续的动作空间(continuous action space)。在上篇文章中可以看出Value-Based方法适合离散有限的动作空间,但对于连续的动作空间就不能很好地处理。
- 能够得到最优的随机策略(stochastic policy)。尽管$\epsilon$-greedy等方式为策略选择加入了一定的随机性,但本质上Value-Based方法得到的最优策略是确定的,即对于同一状态$s$,对应同一动作$a$。举两个例子说明随机策略相对于确定策略的优势:
- 假设训练智能体玩石头、剪刀、布的游戏,最终的最优策略就是一个完全随机的策略,不存在确定的最优策略,因为任何固定的套路都可能会被对手发现并加以利用。
- 在和环境的交互过程中智能体常常会遇到同一种状态(aliased states),若对遇到的同一种状态都采用固定的动作有可能得不到最优的结果,特别是当智能体处在一个只能部分感知的环境(partially observable environment)中时。如下图所示,假设智能体的目标是吃到香蕉并且不吃到辣椒,但是它只能感知到与它相邻的格点的状况,在两个灰色的格点时智能体感知到的状况(即state)是相同的。假设智能体学习到的确定策略如箭头所示,则若智能体位置在黄框范围内时会出现来回地震荡,这显然不是最优的情况。
问题定义
假设策略$\pi$满足概率分布$\pi(s, a, {\theta})$,参数$\theta$控制着分布的形态,是需要进行优化的参数。首先定义目标函数$$J(\theta)=E_{\pi}[R(\tau)]\text{, }\tau=S_0,A_0,R_1,S_1,\cdots$$其中$R(\tau)$为score function, 用于评价策略的好坏,根据$R(\tau)$的不同形式可以有不同的目标函数,例如:$$\text{Average Action Value }J_{\bar{q}}(\theta)=E_{\pi}[q(s,a)]=\int_{s} \int_{a} \pi(s, a, {\theta}) q(s, a)dads$$
Policy Gradient
使用梯度上升的方式对参数进行求解: $\theta\leftarrow\theta+\alpha \nabla_{\theta}J(\theta)$,目标函数的梯度$\nabla_{\theta}J(\theta)$可写为如下形式:$$\nabla_{\theta}J(\theta)=\nabla_{\theta}E_{\pi}[R(\tau)]=E_{\pi}[\nabla_{\theta}(\log{\pi(s, a, {\theta})})R(\tau)]$$一种常用的计算方式是采用Monte Carlo方法对梯度进行估计:
下面举一个例子来进行说明,该例使用的是OpenAI的gym环境CartPole-v0,具体代码如下:
import tensorflow as tf
import numpy as np
import gym ### Create ENVIRONMENT
env = gym.make('CartPole-v0')
env = env.unwrapped
env.seed(1) # Policy gradient has high variance, seed for reproducability ### ENVIRONMENT Hyperparameters
state_size = 4
action_size = env.action_space.n ### TRAINING Hyperparameters
max_episodes = 300
learning_rate = 0.01
gamma = 0.95 # Discount rate ### 计算一个episode中每个时间步的Gt并进行归一化处理
def discount_and_normalize_rewards(episode_rewards):
discounted_episode_rewards = np.zeros_like(episode_rewards)
cumulative = 0.0
for i in reversed(range(len(episode_rewards))):
cumulative = cumulative * gamma + episode_rewards[i]
discounted_episode_rewards[i] = cumulative
# normalize
mean = np.mean(discounted_episode_rewards)
std = np.std(discounted_episode_rewards)
discounted_episode_rewards = (discounted_episode_rewards - mean) / std
return discounted_episode_rewards ### Create Policy Gradient Neural Network model
tf.reset_default_graph()
with tf.name_scope("PolicyNetwork"):
input_ = tf.placeholder(tf.float32, [None, state_size], name="input_")
actions = tf.placeholder(tf.int32, [None, action_size], name="actions")
discounted_episode_rewards_ = tf.placeholder(tf.float32, [None,], name="discounted_episode_rewards")
# Network Architechture
fc1 = tf.contrib.layers.fully_connected(inputs = input_, num_outputs = 10, activation_fn=tf.nn.relu, \
weights_initializer=tf.contrib.layers.xavier_initializer())
fc2 = tf.contrib.layers.fully_connected(inputs = fc1, num_outputs = action_size, activation_fn=tf.nn.relu, \
weights_initializer=tf.contrib.layers.xavier_initializer())
fc3 = tf.contrib.layers.fully_connected(inputs = fc2, num_outputs = action_size, activation_fn=None, \
weights_initializer=tf.contrib.layers.xavier_initializer())
action_distribution = tf.nn.softmax(fc3, name='action_distribution')
# Loss Function
neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits = fc3, labels = actions) # -log(policy distribution)
loss = tf.reduce_mean(neg_log_prob * discounted_episode_rewards_)
# Optimizer
train_opt = tf.train.AdamOptimizer(learning_rate).minimize(loss) ### Train the Agent
allRewards = []
total_rewards = 0
maximumRewardRecorded = 0
episode = 0
episode_states, episode_actions, episode_rewards = [],[],[]
saver = tf.train.Saver() #save model
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for episode in range(max_episodes):
episode_rewards_sum = 0
state = env.reset() # Launch the game
env.render()
while True:
# Choose action a from action distribution
action_probability_distribution = sess.run(action_distribution, feed_dict={input_: state.reshape([1,4])})
action = np.random.choice(range(action_probability_distribution.shape[1]), p=action_probability_distribution.ravel())
# Perform action a
new_state, reward, done, info = env.step(action)
# Store s, a, r
episode_states.append(state)
action_ = np.zeros(action_size)
action_[action] = 1 #one-hot encode for action
episode_actions.append(action_)
episode_rewards.append(reward)
if done:
### Reward Info
episode_rewards_sum = np.sum(episode_rewards) # Calculate sum reward for an episode
allRewards.append(episode_rewards_sum)
total_rewards = np.sum(allRewards)
mean_reward = np.divide(total_rewards, episode+1) # Mean reward
maximumRewardRecorded = np.amax(allRewards)
print("==========================================")
print("Episode: ", episode)
print("Reward: ", episode_rewards_sum)
print("Mean Reward", mean_reward)
print("Max reward so far: ", maximumRewardRecorded)
### Calculate discounted accumulated reward Gt in each timestep
discounted_episode_rewards = discount_and_normalize_rewards(episode_rewards)
### Feedforward, gradient and backpropagation
loss_, _ = sess.run([loss, train_opt], feed_dict={input_: np.vstack(np.array(episode_states)), \
actions: np.vstack(np.array(episode_actions)), \
discounted_episode_rewards_: discounted_episode_rewards})
episode_states, episode_actions, episode_rewards = [],[],[] # clean episode info
break
state = new_state
### Save Model
if episode % 100 == 0:
saver.save(sess, "./models/model.ckpt")
print("Model saved") ### Play the game using the trained agent
with tf.Session() as sess:
env.reset()
rewards = []
saver.restore(sess, "./models/model.ckpt") # Load the model
for episode in range(100):
state = env.reset()
step = 0
done = False
total_rewards = 0
print("****************************************************")
print("EPISODE ", episode)
while True:
### Choose action a
action_probability_distribution = sess.run(action_distribution, feed_dict={input_: state.reshape([1,4])})
action = np.random.choice(range(action_probability_distribution.shape[1]), p=action_probability_distribution.ravel())
new_state, reward, done, info = env.step(action)
total_rewards += reward
if done:
rewards.append(total_rewards)
print ("Score", total_rewards)
break
state = new_state
env.close()
print ("Score over time: " + str(sum(rewards)/len(rewards)))
Constrained Policy Gradient
参数$\theta$的更新可能会导致更新前后策略发生较大变化,使得训练过程不稳定,学习效率降低,因此考虑在目标函数中加入一个惩罚项(类似于机器学习中的正则项),防止策略的剧烈变化。$$J(\theta)=E_{\pi}[R(\tau)]-\beta D\left(\pi(\cdot, \cdot \theta), \pi\left(\cdot,\cdot,\theta^{\prime}\right)\right)$$其中$D$表示更新前后两种策略的变化,常用KL divergence来度量,即$$D\left(\pi(\cdot, \cdot \theta), \pi\left(\cdot,\cdot,\theta^{\prime}\right)\right)=D_{K L}\left(\pi\left(\cdot, \cdot, \theta^{\prime}\right) \| \pi(\cdot, \cdot, \theta)\right)=\int_s\int_a\pi(s, a, \theta^{\prime})\ln\frac{\pi(s, a, \theta^{\prime})}{\pi(s, a, \theta)}dads$$
Actor-Critic
基于策略的方法的难点在于如何评价策略的好坏,方法的主要缺点是收敛速度慢,训练花费时间长,并且容易收敛到局部最优值。例如在上一部分使用Monte Carlo进行计算的过程中由于不能直接计算action value $q(s,a)$,我们使用了$G_t$这个指标($G_t$、$q(s,a)$等概念的具体说明参考文章强化学习基础:基本概念和动态规划),因此需要等每个episode结束后才能开始更新$\theta$,并且$G_t$也不适用于continuing tasks。Actor-Critic结合了基于价值的方法和基于策略的方法,该方法通过Actor来计算并更新policy $\pi(s,a,\theta)$,通过Critic来计算并更新action value $\hat{q}(s,a,w)$:$$\text{Policy Update: }\Delta \theta=\alpha \nabla_{\theta}\left(\log \pi\left(S_{t}, A_{t}, \theta\right)\right) \hat{q}\left(S_{t}, A_{t}, w\right)$$
$$\text{Value Update: }\Delta {w}=\beta\left(R_{t+1}+\gamma \hat{q}\left(S_{t+1}, A_{t+1}, w\right)-\hat{q}\left(S_{t}, A_{t}, w\right)\right) \nabla_{w} \hat{q}\left(S_{t}, A_{t}, w\right)$$
Advantage Actor-Critic
在上篇文章介绍Deep Q-Learning算法的改进时提到了advantage value function $A(s,a)=Q(s,a)-V(s)$,这里使用该函数代替action value $Q(s,a)$,可以减少直接使用$Q(s,a)$带来的不稳定。$A(s,a)$的意义是用来度量在某个状态$s$下采取动作$a$相比在状态$s$的期望奖励额外多出的部分,若$A(s,a)>0$则参数朝着有利于该动作的方向更新,$A(s,a)<0$则朝着相反的方向更新。$A(s,a)$在实际应用时的公式如下所示:$$A(S_t,A_t)=R_{t+1}+\gamma{V(S_{t+1})}-V(S_t)$$因此Critic只需要更新和计算state value $\hat{v}(s,w)$即可。 具体计算公式如下:$$\text{Policy Update: }\Delta \theta=\alpha \nabla_{\theta}\left(\log \pi\left(S_{t}, A_{t}, \theta\right)\right) \left[R_{t+1}+\gamma{\hat{v}(S_{t+1},w)}-\hat{v}(S_t,w)\right]$$
$$\text{Value Update: }\Delta {w}=\beta\left[R_{t+1}+\gamma{\hat{v}(S_{t+1},w)}-\hat{v}(S_t,w)\right] \nabla_{w} \hat{v}\left(S_{t}, w\right)$$使用该算法的一个具体的例子可以参考该文件,文件使用的gym环境为MountainCarContinuous-v0。
DDPG
DDPG(Deep Deterministic Policy Gradients)方法是一种基于Actor-Critic框架的方法,该方法适用于连续的动作空间,得到的策略是一个确定性策略(i.e., $\pi(s)=a$)。DDPG具有较高的学习和训练效率,常被用于机械控制等方面。Actor部分用来计算并更新策略$\pi(s,\theta)$,并且在训练过程中通过在动作上加入一些噪音产生一定的随机性,有利于对整个动作空间的探索:$$A_t=\pi{(S_t,\theta)}+\mathcal{N}_t$$其中$\mathcal{N}_t$代表一个随机过程。Critic部分用来计算并更新action value $\hat{q}(s,a,w)$,和上一部分中的Critic区别不大,但是使用了Fixed Q-targets这一技术(具体介绍见上篇文章):$$\Delta {w}=\beta\left(R_{t+1}+\gamma \hat{q}\left(S_{t+1}, \pi(S_{t+1},\theta^{\prime}), w^{\prime}\right)-\hat{q}\left(S_{t}, A_{t}, w\right)\right) \nabla_{w} \hat{q}\left(S_{t}, A_{t}, w\right)$$针对策略梯度的求解,令$J(\theta)=E_{\rho(s)}[\hat{q}(s,a,w)]=E_{\rho(s)}[\hat{q}(s,\pi(s,\theta),w)]$,其中$\rho(s)$为状态$s$的分布。利用链式法则,可以得到参数$\theta$的更新规则如下:$$\Delta \theta=\alpha \nabla_{a}\hat{q}(S_t,a,w)|_{a=\pi(S_t,\theta)}\nabla_{\theta}[\pi(S_t,\theta)]$$此外对target networks中的参数$w^{\prime},\theta^{\prime}$,使用soft update的策略,即每次更新$w,\theta$后,有$$w^{\prime}=\tau{w}+(1-\tau)w^{\prime}\text{, }\theta^{\prime}=\tau{\theta}+(1-\tau)\theta^{\prime}$$
代码实现
使用的环境是关于四轴飞行器的控制问题,飞行器共有四个马达来提供推力,它们之间的相互配合使得飞行器可以完成多种飞行动作,飞行器的控制代码如下:
import numpy as np
import csv def C(x):
return np.cos(x) def S(x):
return np.sin(x) def earth_to_body_frame(ii, jj, kk):
# C^b_n
R = [[C(kk) * C(jj), C(kk) * S(jj) * S(ii) - S(kk) * C(ii), C(kk) * S(jj) * C(ii) + S(kk) * S(ii)],
[S(kk) * C(jj), S(kk) * S(jj) * S(ii) + C(kk) * C(ii), S(kk) * S(jj) * C(ii) - C(kk) * S(ii)],
[-S(jj), C(jj) * S(ii), C(jj) * C(ii)]]
return np.array(R) def body_to_earth_frame(ii, jj, kk):
# C^n_b
return np.transpose(earth_to_body_frame(ii, jj, kk)) class PhysicsSim():
def __init__(self, init_pose=None, init_velocities=None, init_angle_velocities=None, runtime=5.):
self.init_pose = init_pose
self.init_velocities = init_velocities
self.init_angle_velocities = init_angle_velocities
self.runtime = runtime self.gravity = -9.81 # m/s
self.rho = 1.2
self.mass = 0.958 # 300 g
self.dt = 1 / 50.0 # Timestep
self.C_d = 0.3
self.l_to_rotor = 0.4
self.propeller_size = 0.1
width, length, height = .51, .51, .235
self.dims = np.array([width, length, height]) # x, y, z dimensions of quadcopter
self.areas = np.array([length * height, width * height, width * length])
I_x = 1 / 12. * self.mass * (height**2 + width**2)
I_y = 1 / 12. * self.mass * (height**2 + length**2) # 0.0112 was a measured value
I_z = 1 / 12. * self.mass * (width**2 + length**2)
self.moments_of_inertia = np.array([I_x, I_y, I_z]) # moments of inertia env_bounds = 300.0 # 300 m / 300 m / 300 m
self.lower_bounds = np.array([-env_bounds / 2, -env_bounds / 2, 0])
self.upper_bounds = np.array([env_bounds / 2, env_bounds / 2, env_bounds]) self.reset() def reset(self):
self.time = 0.0
self.pose = np.array([0.0, 0.0, 10.0, 0.0, 0.0, 0.0]) if self.init_pose is None else np.copy(self.init_pose)
self.v = np.array([0.0, 0.0, 0.0]) if self.init_velocities is None else np.copy(self.init_velocities)
self.angular_v = np.array([0.0, 0.0, 0.0]) if self.init_angle_velocities is None else np.copy(self.init_angle_velocities)
self.linear_accel = np.array([0.0, 0.0, 0.0])
self.angular_accels = np.array([0.0, 0.0, 0.0])
self.prop_wind_speed = np.array([0., 0., 0., 0.])
self.done = False def find_body_velocity(self):
body_velocity = np.matmul(earth_to_body_frame(*list(self.pose[3:])), self.v)
return body_velocity def get_linear_drag(self):
linear_drag = 0.5 * self.rho * self.find_body_velocity()**2 * self.areas * self.C_d
return linear_drag def get_linear_forces(self, thrusts):
# Gravity
gravity_force = self.mass * self.gravity * np.array([0, 0, 1])
# Thrust
thrust_body_force = np.array([0, 0, sum(thrusts)])
# Drag
drag_body_force = -self.get_linear_drag()
body_forces = thrust_body_force + drag_body_force linear_forces = np.matmul(body_to_earth_frame(*list(self.pose[3:])), body_forces)
linear_forces += gravity_force
return linear_forces def get_moments(self, thrusts):
# (thrusts[2] + thrusts[3] - thrusts[0] - thrusts[1]) * self.T_q]) # Moment from thrust
thrust_moment = np.array([(thrusts[3] - thrusts[2]) * self.l_to_rotor,(thrusts[1] - thrusts[0]) * self.l_to_rotor, 0])
drag_moment = self.C_d * 0.5 * self.rho * self.angular_v * np.absolute(self.angular_v) * self.areas * self.dims * self.dims
moments = thrust_moment - drag_moment # + motor_inertia_moment
return moments def calc_prop_wind_speed(self):
body_velocity = self.find_body_velocity()
phi_dot, theta_dot = self.angular_v[0], self.angular_v[1]
s_0 = np.array([0., 0., theta_dot * self.l_to_rotor])
s_1 = -s_0
s_2 = np.array([0., 0., phi_dot * self.l_to_rotor])
s_3 = -s_2
speeds = [s_0, s_1, s_2, s_3]
for num in range(4):
perpendicular_speed = speeds[num] + body_velocity
self.prop_wind_speed[num] = perpendicular_speed[2] def get_propeler_thrust(self, rotor_speeds):
### calculates net thrust (thrust - drag) based on velocity of propeller and incoming power
thrusts = []
for prop_number in range(4):
V = self.prop_wind_speed[prop_number]
D = self.propeller_size
n = rotor_speeds[prop_number]
J = V / n * D
# From http://m-selig.ae.illinois.edu/pubs/BrandtSelig-2011-AIAA-2011-1255-LRN-Propellers.pdf
C_T = max(.12 - .07*max(0, J)-.1*max(0, J)**2, 0)
thrusts.append(C_T * self.rho * n**2 * D**4)
return thrusts def next_timestep(self, rotor_speeds):
self.calc_prop_wind_speed()
thrusts = self.get_propeler_thrust(rotor_speeds)
self.linear_accel = self.get_linear_forces(thrusts) / self.mass position = self.pose[:3] + self.v * self.dt + 0.5 * self.linear_accel * self.dt**2
self.v += self.linear_accel * self.dt moments = self.get_moments(thrusts) self.angular_accels = moments / self.moments_of_inertia
angles = self.pose[3:] + self.angular_v * self.dt + 0.5 * self.angular_accels * self.angular_accels * self.dt ** 2
angles = (angles + 2 * np.pi) % (2 * np.pi)
self.angular_v = self.angular_v + self.angular_accels * self.dt new_positions = []
for ii in range(3):
if position[ii] <= self.lower_bounds[ii]:
new_positions.append(self.lower_bounds[ii])
self.done = True
elif position[ii] > self.upper_bounds[ii]:
new_positions.append(self.upper_bounds[ii])
self.done = True
else:
new_positions.append(position[ii])
self.pose = np.array(new_positions + list(angles)) self.time += self.dt
if self.time > self.runtime:
self.done = True
return self.done
接下来选取起飞动作做为需要训练飞行器完成的任务。飞行器的动作由四个发动机施加的推力$(v_1,v_2,v_3,v_4)$构成,为了保证飞行动作的连续性,将同一个动作重复三个时间步,飞行器的状态由这三步的空间坐标以及飞行角度构成:$(x_i,y_i,z_i,\phi_i,\theta_i,\psi_i),\text{ }i=1,2,3$,具体代码和奖励函数如下:
class Task():
### Task (environment) that defines the goal and provides feedback to the agent
def __init__(self, init_pose=None, init_velocities=None, init_angle_velocities=None, runtime=5., target_pos=None):
"""Initialize a Task object.
Params
======
init_pose: initial position of the quadcopter in (x,y,z) dimensions and the Euler angles
init_velocities: initial velocity of the quadcopter in (x,y,z) dimensions
init_angle_velocities: initial radians/second for each of the three Euler angles
runtime: time limit for each episode
target_pos: target/goal (x,y,z) position for the agent
"""
# Simulation
self.sim = PhysicsSim(init_pose, init_velocities, init_angle_velocities, runtime)
self.action_repeat = 3 # repeat the same action for 3 timesteps
self.state_size = self.action_repeat * 6
self.action_low = 0
self.action_high = 900
self.action_size = 4
# Goal
self.target_pos = target_pos if target_pos is not None else np.array([0., 0., 10.]) def get_reward(self, done):
### Uses current pose of sim to return reward
done_final = done
#reward = zero for matching target z, <0 as you go farther, upto -20
reward = -min(abs(self.target_pos[2] - self.sim.pose[2]), 20.0)
if done_final:
reward -= 10.0
elif self.sim.pose[2] >= self.target_pos[2]: # agent has crossed the target height
reward += 10.0 # bonus reward
done_final = True
return reward, done_final def step(self, actions):
### Uses action to obtain next state, reward, done
reward = 0
pose_all = []
rotor_speeds = [a*(self.action_high-self.action_low)+self.action_low for a in actions]
for _ in range(self.action_repeat):
done = self.sim.next_timestep(rotor_speeds) # update the sim pose and velocities
r,done_final = self.get_reward(done)
reward += r
pose_all = pose_all + list(self.sim.pose)
next_state = np.array(pose_all)
return next_state, reward, done_final def reset(self):
### Reset the sim to start a new episode
self.sim.reset()
pose_all = list(self.sim.pose) * self.action_repeat
state = np.array(pose_all)
return state
对于随机过程$\mathcal{N}_t$,采用Ornstein-Uhlenbeck过程,此外在训练过程中还使用了上篇文章中介绍的Experience Replay,具体代码如下:
class OUNoise:
### Ornstein-Uhlenbeck process
def __init__(self, size, mu, theta, sigma):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.reset() def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu) def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(len(x))
self.state = x + dx
return self.state class ReplayBuffer:
### Fixed-size buffer to store experience tuples
def __init__(self, buffer_size, batch_size):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size: maximum size of buffer
batch_size: size of each training batch
"""
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) def add(self, state, action, reward, next_state, done):
### Add a new experience to memory
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e) def sample(self, batch_size=64):
### Randomly sample a batch of experiences from memory
return random.sample(self.memory, k=self.batch_size) def __len__(self):
### Return the current size of internal memory
return len(self.memory)
接下来对Actor、Critic以及DDPG建立模型:
- Actor
import copy
import random
from collections import namedtuple, deque
from keras import layers, models, optimizers, initializers, regularizers
from keras import backend as K class Actor:
### Actor (Policy) Model
def __init__(self, state_size, action_size):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
"""
self.state_size = state_size
self.action_size = action_size
self.build_model() # Initialize any other variables here def build_model(self):
### Build an actor (policy) network that maps states -> actions
states = layers.Input(shape=(self.state_size,), name='states') # Define input layer (states)
# Add hidden layers
net = layers.Dense(units=400, activation='relu')(states)
net = layers.Dense(units=300, activation='relu')(net)
# Add final output layer with sigmoid activation
actions = layers.Dense(units=self.action_size, activation='sigmoid', bias_initializer='zeros', name='actions', \
kernel_initializer=initializers.RandomUniform(minval=-0.0001, maxval=0.0001))(net)
# Create Keras model
self.model = models.Model(inputs=states, outputs=actions)
# Define loss function using action value (Q value) gradients
action_gradients = layers.Input(shape=(self.action_size,))
loss = K.mean(-action_gradients * actions)
# Define optimizer and training function
optimizer = optimizers.Adam(lr=0.0001)
updates_op = optimizer.get_updates(params=self.model.trainable_weights, loss=loss)
self.train_fn = K.function(inputs=[self.model.input, action_gradients, K.learning_phase()], \
outputs=[], updates=updates_op) - Critic
class Critic:
### Critic (Value) Model
def __init__(self, state_size, action_size):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
"""
self.state_size = state_size
self.action_size = action_size
self.build_model() # Initialize any other variables here def build_model(self):
### Build a critic (value) network that maps (state, action) pairs -> Q-values
states = layers.Input(shape=(self.state_size,), name='states') # Define input layers
actions = layers.Input(shape=(self.action_size,), name='actions')
# Add hidden layer(s) for state pathway
net_states = layers.Dense(units=400, activation='relu')(states)
net_states = layers.Dense(units=300)(net_states)
# Add hidden layer(s) for action pathway
net_actions = layers.Dense(units=300)(actions)
# Combine state and action pathways
net = layers.Add()([net_states, net_actions])
net = layers.Activation('relu')(net)
# Add final output layer to prduce action values (Q values)
Q_values = layers.Dense(units=1, name='q_values')(net)
# Create Keras model
self.model = models.Model(inputs=[states, actions], outputs=Q_values)
# Define optimizer and compile model for training with built-in loss function
optimizer = optimizers.Adam(lr=0.01)
self.model.compile(optimizer=optimizer, loss='mse')
# Compute action gradients (derivative of Q values w.r.t. to actions)
action_gradients = K.gradients(Q_values, actions) # one element list:[tensor shape=(batch_size,4)]
# Define an additional function to fetch action gradients (to be used by actor model)
self.get_action_gradients = K.function(inputs=[*self.model.input, K.learning_phase()], \
outputs=action_gradients) - DDPG
class DDPG():
### Reinforcement Learning agent that learns using DDPG
def __init__(self, task):
self.task = task
self.state_size = task.state_size
self.action_size = task.action_size
# Actor (Policy) Model
self.actor_local = Actor(self.state_size, self.action_size)
self.actor_target = Actor(self.state_size, self.action_size)
# Critic (Value) Model
self.critic_local = Critic(self.state_size, self.action_size)
self.critic_target = Critic(self.state_size, self.action_size)
# Initialize target model parameters with local model parameters
self.critic_target.model.set_weights(self.critic_local.model.get_weights())
self.actor_target.model.set_weights(self.actor_local.model.get_weights())
# Noise process
self.exploration_mu = 0
self.exploration_theta = 1.0
self.exploration_sigma = 0.01
self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma)
# Replay memory
self.buffer_size = 1000000
self.batch_size = 64
self.memory = ReplayBuffer(self.buffer_size, self.batch_size)
# Algorithm parameters
self.gamma = 0.99 # discount factor
self.tau = 0.0002 # for soft update of target parameters def reset_episode(self):
self.noise.reset()
state = self.task.reset()
self.last_state = state
return state def step(self, action, reward, next_state, done):
# Save experience
self.memory.add(self.last_state, action, reward, next_state, done)
# Learn, if enough samples are available in memory
if len(self.memory) > self.batch_size:
experiences = self.memory.sample()
self.learn(experiences)
# Roll over last state
self.last_state = next_state def act(self, state, mode='train'):
### Returns actions for a given state as per current policy
state = np.reshape(state, [-1, self.state_size]) #(1,state_size)
action = self.actor_local.model.predict(state)[0]
# add some noise for exploration
return list(np.clip(action+self.noise.sample(), 0.01, 1)) if mode=='train' else list(np.clip(action, 0.01, 1)) def learn(self, experiences):
### Update policy and value parameters using given batch of experience tuples
# Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.)
states = np.vstack([e.state for e in experiences if e is not None])
actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size)
rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1)
dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1)
next_states = np.vstack([e.next_state for e in experiences if e is not None])
# Get predicted next-state actions and Q values from target models
# Q_targets_next = critic_target(next_state, actor_target(next_state))
actions_next = self.actor_target.model.predict_on_batch(next_states)
Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next])
# Compute Q targets for current states and train critic model (local)
Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) #set Q_targets_next=0 if done
self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) #在一个 batch 的数据上进行一次参数更新
# Train actor model (local)
action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size))
self.actor_local.train_fn([states, action_gradients, 1]) # custom training function
# Soft-update target models
self.soft_update(self.critic_local.model, self.critic_target.model)
self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model):
### Soft update model parameters
local_weights = np.array(local_model.get_weights())
target_weights = np.array(target_model.get_weights())
assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size"
new_weights = self.tau * local_weights + (1 - self.tau) * target_weights
target_model.set_weights(new_weights)
智能体的训练和测试过程如下所示:
import sys
import Task
import DDPG
from collections import defaultdict
import pandas as pd
import matplotlib.pyplot as plt ### Initialize the agent
init_pose = np.zeros(6)
target_pos = np.array([0., 0., 10.])
task = Task(init_pose=init_pose, target_pos=target_pos)
agent = DDPG(task)
### Train
num_episodes = 800
rewards = defaultdict(list)
positions = defaultdict(list)
actions = defaultdict(list)
for i_episode in range(1, num_episodes+1):
state = agent.reset_episode() # start a new episode
positions[i_episode].append(state)
while True:
action = agent.act(state)
next_state, reward, done = task.step(action)
agent.step(action, reward, next_state, done)
state = next_state #roll state
actions[i_episode].append(action)
rewards[i_episode].append(reward)
positions[i_episode].append(next_state)
if done:
print("\rEpisode = {:4d}, Final Reward = {:7.3f}, Final Position = {}" \
.format(i_episode, rewards[i_episode][-1], positions[i_episode][-1][-6:-3]), end="")
break
sys.stdout.flush() ### Plot the final reward of each episode
def plot_rewards(rewards, rolling_window=20):
# Plot rewards and optional rolling mean using specified window
plt.plot(rewards)
plt.title("Final Rewards");
rolling_mean = pd.Series(rewards).rolling(rolling_window).mean()
plt.plot(rolling_mean)
rewards_p = np.array([rewards[i][-1] for i in range(1, num_episodes+1)])
plot_rewards(rewards_p) #左图 ### Simulate using the deterministic policy
positions_sim = []
rewards_sim = []
actions_sim = []
state = agent.reset_episode() # start a new episode
positions_sim.append(state)
while True:
action = agent.act(state, mode='test')
next_state, reward, done = task.step(action)
state = next_state #roll state
actions_sim.append(action)
rewards_sim.append(reward)
positions_sim.append(next_state)
if done: break ### Plot the position curve .
from mpl_toolkits.mplot3d import Axes3D
def plot_positions(xs,ys,zs):
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_title("Position Curve")
ax.set_xlabel("x"); ax.set_xlim(-6,6)
ax.set_ylabel("y"); ax.set_ylim(-6,6)
ax.set_zlabel("z"); ax.set_zlim(0,12)
ax.plot(xs, ys, zs, c='r')
positions_p = np.array(positions_sim)
plot_positions(positions_p[:,-6], positions_p[:,-5], positions_p[:,-4]) #右图
final_p = [round(p,3) for p in positions_p[-1,-6:-3]]
print("The Final Reward = {:7.3f}".format(rewards_sim[-1])) #8.794
print('The Final Position is {}'.format(final_p)) #[-0.001, 0.0, 10.126]
深度强化学习:Policy-Based methods、Actor-Critic以及DDPG的更多相关文章
- 深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods)
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.you ...
- 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)
深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO) 2018-07-17 16:54:51 Reference: https://b ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- (转) 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文)
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 201 ...
- 深度强化学习(DRL)专栏(一)
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. ...
- 深度强化学习(DRL)专栏开篇
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning&quo ...
- 【资料总结】| Deep Reinforcement Learning 深度强化学习
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...
- 深度强化学习资料(视频+PPT+PDF下载)
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有 ...
随机推荐
- Linux下diff工具
目录 CentOS 7为例 Meld DiffMerge KDiff3 Kompare CentOS 7为例 Meld Installation 官网 $ sudo yum install meld; ...
- Docker 基础知识 - 使用绑定挂载(bind mounts)管理应用程序数据
绑定挂载(bind mounts)在 Docker 的早期就已经出现了.与卷相比,绑定挂载的功能有限.当您使用绑定挂载时,主机上的文件或目录将挂载到容器中.文件或目录由其在主机上的完整或相对路径引用. ...
- .net core https 双向验证
文章来自:https://www.cnblogs.com/axzxs2001/p/10070562.html 关于https双向认证的知识可先行google,这时矸接代码. 为了双向认证,我们首先得准 ...
- vue中使用触摸事件,上滑,下滑,等
第一步,下载一个包 npm install kim-vue-touch -s 在当前项目中下载包 第二部 import vueTouch from 'kim-vue-touch' Vue.use(vu ...
- 看了这篇你就会手写RPC框架了
一.学习本文你能学到什么? RPC的概念及运作流程 RPC协议及RPC框架的概念 Netty的基本使用 Java序列化及反序列化技术 Zookeeper的基本使用(注册中心) 自定义注解实现特殊业务逻 ...
- sed在文本第一行和最后一行添加字符串
shell在文本第一行和最后一行添加字符串 sed -i '1 i\ApiInterfaceName ResposeTime' /tmp/apiLog/apiLogFromatSecond.logse ...
- 人工智能?.netcore一样胜任!
提起AI,大家都会先想到Python,确实Python作为一门好几十年的老语言,上一波的AI大流行使它焕发了青春.大家用Phtyon来做AI,最主要的原因无非就是编码量更少,很多数学和AI相关的Api ...
- 菜鸟教程的 mysql-connector 基础
安装驱动 python -m pip install mysql-connector 导包 import mysql.connector mydb = mysql.connector.connect( ...
- PHP curl_share_init函数
(PHP 5 >= 5.5.0) curl_share_init — 初始化一个 cURL 共享句柄 说明 resource curl_share_init ( void ) 允许两个 cURL ...
- 7.3 NOI模拟赛 苹果 随机 高维前缀和
头一次遇到高维前缀和的题目 所以赛时不太会写. \(n\cdot Mx\cdot log\)的暴力做法这里不再赘述. 容易想到随机一个数字 然后其有\(\frac{1}{2}\)的概率在答案的集合中. ...