WPF -- 一种圆形识别方案
本文介绍一种圆形的识别方案。
识别流程
- 判断是否为封闭图形;
- 根据圆的方程,取输入点集中的1/6、3/6、5/6处的三个点,求得圆的方程,获取圆心及半径;
- 取点集中的部分点,计算点到圆心的距离与半径的比例,与设定的阈值比较,得出结果。~~~~
实现
public static bool IsCircle(List<Point> points, out Point center, out double radius)
{
int len = points.Count;
center = new Point();
radius = 0;
// 判断是否为封闭图形
if (!IsClosedFigure(points))
return false;
int judgePointNum = len * 50 / 100;
if (len < judgePointNum)
return false;
// 取链表上三个点作为判断圆的根据
Point p1 = points[len / 6];
Point p2 = points[len / 2];
Point p3 = points[len * 5 / 6];
if ((Math.Abs(p1.X - p2.X) < 100 && Math.Abs(p1.Y - p2.Y) < 100)
|| (Math.Abs(p1.X - p3.X) < 100 && Math.Abs(p1.Y - p3.Y) < 100)
|| (Math.Abs(p2.X - p3.X) < 100 && Math.Abs(p2.Y - p3.Y) < 100))
return false;
// 三个点确定圆的方程,获取圆心坐标及半径
GetCircle(p1, p2, p3, out center, out radius);
// 获取圆上平均分部的多个点,判断其到圆心的距离与半径之差是否在精度内
for (int i = 0; i < judgePointNum; ++i)
{
// 获取圆上点
Point p = points[len * i / judgePointNum];
double deviation = Math.Abs(GetDistance(center, p) - radius);
// 点在圆上的偏移量与半径的比值若大于固定值,则不为圆
if (deviation/radius > MaxRatio)
return false;
}
return true;
}
WPF -- 一种圆形识别方案的更多相关文章
- WPF -- 一种直线识别方案
本文介绍一种直线的识别方案. 步骤 使用最小二乘法回归直线: 得到直线方程y=kx+b后,计算所有点到直线的距离,若在阈值范围内,认为是直线. 实现 /// <summary> /// 最 ...
- javascript四种类型识别的方法
× 目录 [1]typeof [2]instanceof [3]constructor[4]toString 前面的话 javascript有复杂的类型系统,类型识别则是基本的功能.javascrip ...
- 正确修改MySQL最大连接数的三种好用方案
以下的文章主要介绍的是正确修改MySQL最大连接数的三种好用方案,我们大家都知道MySQL数据库在安装完之后,默认的MySQL数据库,其最大连接数为100,一般流量稍微大一点的论坛或网站这个连接数是远 ...
- 最经常使用的两种C++序列化方案的使用心得(protobuf和boost serialization)
导读 1. 什么是序列化? 2. 为什么要序列化?优点在哪里? 3. C++对象序列化的四种方法 4. 最经常使用的两种序列化方案使用心得 正文 1. 什么是序列化? 程序猿在编写应用程序的时候往往须 ...
- 最常用的两种C++序列化方案的使用心得(protobuf和boost serialization)
导读 1. 什么是序列化? 2. 为什么要序列化?好处在哪里? 3. C++对象序列化的四种方法 4. 最常用的两种序列化方案使用心得 正文 1. 什么是序列化? 程序员在编写应用程序的时候往往需要将 ...
- OAuth2 RFC 6749 规范提供的四种基本认证方案
OAuth2 RFC 6749 规范提供了四种基本认证方案,以下针对这四种认证方案以及它们在本实现中的使用方式进行分别说面. 第一种认证方式: Authorization Code Grant (授权 ...
- Python几种并发实现方案的性能比较
http://blog.csdn.net/permike/article/details/54846831 Python几种并发实现方案的性能比较 2017-02-03 14:33 1541人阅读 评 ...
- objc单例的两种安全实现方案
所有转出博客园,请您注明出处:http://www.cnblogs.com/xiaobajiu/p/4122034.html objc的单例的两种安全实现方案 首先应该知道单例的实现有两大类,一个是懒 ...
- SSO的几种跨域方案
在此只是记录一下自己在尝试SSO跨域实现的过程中学到的几种跨域方案,不包含任何例子和具体的实现方法. 最近在尝试SSO的跨域,看了好多资料,然后自己记录了一下可以实现的方法: ①跳转所有站点设置coo ...
随机推荐
- Vue.js到前端工程化
b站视频地址:黑马程序员Vue.js到前端工程化(webpack打包,以及Vue-cli3和Element-UI的使用) vue学习系列 1.vue概述 2.vue基本使用 3.vue模板语法 4.指 ...
- jackson学习之八:常用方法注解
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Jenkins(5)生成allure报告
前言 jenkins集成了allure插件,安装插件后运行pytest+allure的脚本即可在jenkins上查看allure报告了. allure安装 在运行代码的服务器本机,我这里是用的dock ...
- Pytest(16)随机执行测试用例pytest-random-order
前言 通常我们认为每个测试用例都是相互独立的,因此需要保证测试结果不依赖于测试顺序,以不同的顺序运行测试用例,可以得到相同的结果. pytest默认运行用例的顺序是按模块和用例命名的 ASCII 编码 ...
- getline()的使用注意
在使用getline读入一整行时,若是前面是使用getchar().cin这类读入了一个字母,但是不会读入后续换行\n符号或者空格的输入时,再接getline()就容易出现问题. 这是因为输入数字之后 ...
- 2020 CCPC Wannafly Winter Camp Day1 C. 染色图
2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...
- Codeforces Round #672 (Div. 2) D. Rescue Nibel!(排序)
题目链接:https://codeforces.com/contest/1420/problem/D 前言 之前写过这场比赛的题解,不过感觉这一题还可以再单独拿出来好好捋一下思路. 题意 给出 $n$ ...
- GPLT L2-024 部落 (并查集)
N ≤ 104,输入如下数据如果没有路径压缩可能会超时. 10000 2 1 2 2 3 4 2 5 6 -- 2 9997 9998 2 9999 10000 2 9999 9997 -- 2 5 ...
- hdu5627 Clarke and MST (并查集)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submission ...
- CodeCraft-20 (Div. 2) B. String Modification (字符串,规律)
题意:有一个长度为\(n\)的字符串,你可以选取一个值\(k(1\le k \le n)\),然后遍历字符串,每次将区间长度为\(k\)的字符串反转,求反转后字典序最小的字符串,并输出\(k\)的值. ...