Machine Learning Algorithms Study Notes(6)—遗忘的数学知识
机器学习中遗忘的数学知识
最大似然估计( Maximum likelihood )
最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。
最大似然估计的原理
给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率:
但是,我们可能不知道的值,尽管我们知道这些采样数据来自于分布。那么我们如何才能估计出呢?一个自然的想法是从这个分布中抽出一个具有个值的采样,然后用这些采样数据来估计.
一旦我们获得,我们就能从中找到一个关于的估计。最大似然估计会寻找关于的最可能的值(即,在所有可能的取值中,寻找一个值使这个采样的"可能性"最大化)。这种方法正好同一些其他的估计方法不同,如的非偏估计,非偏估计未必会输出一个最可能的值,而是会输出一个既不高估也不低估的值。
要在数学上实现最大似然估计法,我们首先要定义似然函数:
并且在的所有取值上,使这个函数最大化(一阶导数)。这个使可能性最大的值即被称为的最大似然估计。
注意:
- 这里的似然函数是指不变时,关于的一个函数。
- 最大似然估计函数不一定是惟一的,甚至不一定存在。
离散分布,离散有限参数空间
考虑一个抛硬币的例子。假设这个硬币正面跟反面轻重不同。我们把这个硬币抛80次(即,我们获取一个采样并把正面的次数记下来,正面记为H,反面记为T)。并把抛出一个正面的概率记为,抛出一个反面的概率记为(因此,这里的即相当于上边的)。假设我们抛出了49个正面,31个反面,即49次H,31次T。假设这个硬币是我们从一个装了三个硬币的盒子里头取出的。这三个硬币抛出正面的概率分别为, , .这些硬币没有标记,所以我们无法知道哪个是哪个。使用最大似然估计,通过这些试验数据(即采样数据),我们可以计算出哪个硬币的可能性最大。这个似然函数取以下三个值中的一个:
我们可以看到当时,似然函数取得最大值。这就是的最大似然估计。
1.3. 离散分布,连续参数空间
现在假设例子1中的盒子中有无数个硬币,对于中的任何一个, 都有一个抛出正面概率为的硬币对应,我们来求其似然函数的最大值:
其中. 我们可以使用微分法来求最值。方程两边同时对取微分,并使其为零。
其解为, ,以及.使可能性最大的解显然是(因为和这两个解会使可能性为零)。因此我们说最大似然估计值为。
这个结果很容易一般化。只需要用一个字母代替49用以表达伯努利试验中的被观察数据(即样本)的"成功"次数,用另一个字母代表伯努利试验的次数即可。使用完全同样的方法即可以得到最大似然估计值:
对于任何成功次数为,试验总数为的伯努利试验。
连续分布,连续参数空间
现在有个正态随机变量的采样点,要求的是一个这样的正态分布,这些采样点分布到这个正态分布可能性最大(也就是概率密度积最大,每个点更靠近中心点),其个正态随机变量的采样的对应密度函数(假设其独立并服从同一分布)为:
或:
,
这个分布有两个参数:.有人可能会担心两个参数与上边的讨论的例子不同,上边的例子都只是在一个参数上对可能性进行最大化。实际上,在两个参数上的求最大值的方法也差不多:只需要分别把可能性 在两个参数上最大化即可。当然这比一个参数麻烦一些,但是一点也不复杂。使用上边例子同样的符号,我们有.
最大化一个似然函数同最大化它的自然对数是等价的。因为自然对数log是一个连续且在似然函数的值域内严格递增的上凸函数。[注意:可能性函数(似然函数)的自然对数跟信息熵以及Fisher信息联系紧密。]求对数通常能够一定程度上简化运算,比如在这个例子中可以看到:
这个方程的解是.这的确是这个函数的最大值,因为它是里头惟一的一阶导数等于零的点并且二阶导数严格小于零。
同理,我们对求导,并使其为零。
这个方程的解是.
因此,其关于的最大似然估计为:
Jensen不等式
回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。
Jensen不等式表述如下:
如果f是凸函数,X是随机变量,那么
特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量。
这里我们将简写为。
如果用图表示会很清晰:
图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到成立。
当f是(严格)凹函数当且仅当-f是(严格)凸函数。
Jensen不等式应用于凹函数时,不等号方向反向,也就是。
奇异值分解
奇异值分解,singular value decomposition(SVD)是线性代数中一种重要的矩阵分解。
奇异值和特征值基础知识
特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:
特征值
如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:
这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式:
其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。我这里引用了一些参考文献中的内容来说明一下。首先要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵:
它其实对应的线性变换是下面的形式:
因为这个矩阵M乘以一个向量(x,y)的结果是:
上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子:
它所描述的变换是下面的样子:
这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示),在图中,蓝色的箭头是一个最主要的变化方向(变化方向可能有不止一个),如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。反过头来看看之前特征值分解的式子,分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向。
当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通过图片来表示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是之前说的:提取这个矩阵最重要的特征。总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。 \
奇异值
下面谈谈奇异值分解。特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:
假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N * M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V'(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片
那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 * A,将会得到一个方阵,我们用这个方阵求特征值可以得到:
这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:
这里的σ就是上面说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:
r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。
Spark MLlib实现SVD计算
示例数据
1 0 0 0 2
0 0 3 0 0
0 0 0 0 0
0 4 0 0 0
示例代码
Java code
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("SVDTest").setMaster("local[2]");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> data = sc.textFile("/home/yurnom/data/svd.txt");
JavaRDD<Vector> rows = data.map(s -> {
double[] values = Arrays.asList(SPACE.split(s))
.stream()
.mapToDouble(Double::parseDouble)
.toArray();
return Vectors.dense(values);
});
RowMatrix mat = new RowMatrix(rows.rdd());
//第一个参数3意味着取top 3个奇异值,第二个参数true意味着计算矩阵U,第三个参数意味小于1.0E-9d的奇异值将被抛弃
SingularValueDecomposition<RowMatrix, Matrix> svd = mat.computeSVD(3, true, 1.0E-9d);
RowMatrix U = svd.U(); //矩阵U
Vector s = svd.s(); //奇异值
Matrix V = svd.V(); //矩阵V
System.out.println(s);
System.out.println("-------------------");
System.out.println(V);
}
示例结果
[4.0,3.0,2.23606797749979]
-------------------
0.0 0.0 -0.44721359549995787
-1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 -0.8944271909999159
参考文献
[1] Machine Learning Open Class by Andrew Ng in Stanford http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
[2] Yu Zheng, Licia Capra, Ouri Wolfson, Hai Yang. Urban Computing: concepts, methodologies, and applications. ACM Transaction on Intelligent Systems and Technology. 5(3), 2014
[3] Jerry Lead http://www.cnblogs.com/jerrylead/
[3]《大数据-互联网大规模数据挖掘与分布式处理》 Anand Rajaraman,Jeffrey David Ullman著,王斌译
[4] UFLDL Tutorial http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
[5] Spark MLlib之朴素贝叶斯分类算法 http://selfup.cn/683.html
[6] MLlib - Dimensionality Reduction http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
[7] 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html
[8] 浅谈 mllib 中线性回归的算法实现 http://www.cnblogs.com/hseagle/p/3664933.html
[9] 最大似然估计 http://zh.wikipedia.org/zh-cn/%E6%9C%80%E5%A4%A7%E4%BC%BC%E7%84%B6%E4%BC%B0%E8%AE%A1
[10] Deep Learning Tutorial http://deeplearning.net/tutorial/
附 录
Andrew Ng 在斯坦福大学的CS229机器学习课程内容
Andrew Ng -- Stanford University CS 229 Machine Learning
This course provides a broad introduction to machine learning and statistical pattern recognition.
Topics include:
supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines);
learning theory (bias/variance tradeoffs; VC theory; large margins);
unsupervised learning (clustering, dimensionality reduction, kernel methods);
reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing.
中英文词语对照
neural networks 神经网络
activation function 激活函数
hyperbolic tangent 双曲正切函数
bias units 偏置项
activation 激活值
forward propagation 前向传播
feedforward neural network 前馈神经网络(参照Mitchell的《机器学习》的翻译)
Softmax回归 Softmax Regression
有监督学习 supervised learning
无监督学习 unsupervised learning
深度学习 deep learning
logistic回归 logistic regression
截距项 intercept term
二元分类 binary classification
类型标记 class labels
估值函数/估计值 hypothesis
代价函数 cost function
多元分类 multi-class classification
权重衰减 weight decay
深度网络 Deep Networks
深度神经网络 deep neural networks
非线性变换 non-linear transformation
激活函数 activation function
简洁地表达 represent compactly
"部分-整体"的分解 part-whole decompositions
目标的部件 parts of objects
高度非凸的优化问题 highly non-convex optimization problem
共轭梯度 conjugate gradient
梯度的弥散 diffusion of gradients
逐层贪婪训练方法 Greedy layer-wise training
自动编码器 autoencoder
微调 fine-tuned
自学习方法 self-taught learning
Machine Learning Algorithms Study Notes(6)—遗忘的数学知识的更多相关文章
- Machine Learning Algorithms Study Notes(1)--Introduction
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1 Introduction 1 1.1 ...
- Machine Learning Algorithms Study Notes(3)--Learning Theory
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
- 5 Techniques To Understand Machine Learning Algorithms Without the Background in Mathematics
5 Techniques To Understand Machine Learning Algorithms Without the Background in Mathematics Where d ...
- 机器学习算法之旅A Tour of Machine Learning Algorithms
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour th ...
- Top 10 Machine Learning Algorithms For Beginners
Linear Regression Logistic regression KNN Classification Support Vector Machine (SVM) Decision Trees ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
随机推荐
- 客户端调用 WCF 的几种方式
转载网络代码.版权归原作者所有..... 客户端调用WCF的几种常用的方式: 1普通调用 var factory = new DataContent.ServiceReference1.Custome ...
- 自己动手C#模拟电梯的运行V1.0
电梯调度有很多种模式,参见http://www.cnblogs.com/jianyungsun/archive/2011/03/16/1986439.html 1.1先来先服务算法(FCFS) 先来先 ...
- 【C#进阶系列】30 学习总结
前面学起来还是很顺的,毕竟很多都接触过. 后面学起来只能用“磨”来形容,以至于八章用了2个月.(当然也有相当一些原因是这两个月中发生了一些个人生活上的问题) 总的来说收获超大,这种感觉就像大一的时候学 ...
- 从零开始学Python第七周:面向对象进阶(需修改)
一,类的属性 (1)示例 通过属性获取已经创建对象的个数 class Plane: pCount = 0 #类属性 def __init__(self,name,category): self.nam ...
- [moka同学收藏]网页上的“返回上一页”的几种实现代码
我们在制作网页的时候,经常在网页上要用到"返回上一页"的功能.这一功能在制作网页的时候会有多种编码方法,在此,笔者将比较常用的几种编码写作方法在下面列出来,供各位技术人员参考使用. ...
- Linux Cmd Tool 系列之—history & search command history
History cmd is for list Bash's log of the historical cmd you typed 1. List last n commands history n ...
- 线程.FTP.SFTP.打包
Windows就是多线程模式.每一个解决方案就是一个进程.一个进程下拥有多个线程. 简单点.单核的处理器不存在多线程.是CPU在每一个线程上切换处理.在人反应不过来的情况下完成同步的效果. 比如左手画 ...
- CSS3与页面布局学习笔记(六)——CSS3新特性(阴影、动画、渐变、变形( transform)、透明、伪元素等)
一.阴影 1.1.文字阴影 text-shadow<length>①: 第1个长度值用来设置对象的阴影水平偏移值.可以为负值 <length>②: 第2个长度值用来设置对象的阴 ...
- 深入理解和应用Float属性
一.Float的特性 1. 应用于文字围绕图片 2. 创建一个块级框 3. 多列浮动布局 4. 浮动元素的宽度.高度自适应,但可以设置其值. 二.核心解决的问题 文字围绕图片:img标签与多个文本标签 ...
- JavaScript toUpperCase() 方法和 toLowerCase() 方法
1,toUpperCase() 方法用于把字符串转换为大写. 一个新的字符串,在其中 stringObject 的所有小写字符全部被转换为了大写字符. 语法为: stringObject.toUppe ...