Leetcode(145)-二叉树的后序遍历
给定一个二叉树,返回它的 后序 遍历。
示例:
输入: [1,null,2,3]
1
\
2
/
3 输出: [3,2,1]
思路:一开始编写二叉树后序遍历的程序,感觉定级为困难有点欠妥,确实,如果用递归的做法来做,和前序中序没有太大的程序上的变动,但是如果用非递归的做法来做,就会发现确实要多了一个判断过程。
(1)递归
vector<int> a;
vector<int> postorderTraversal(TreeNode* root) {
if(root)
{
postorderTraversal(root->left);
postorderTraversal(root->right);
a.push_back(root->val);
}
return a;
}
(2)非递归
后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。
第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还没有被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。
struct BTNode
{
TreeNode* node;
bool isFirst;
BTNode(TreeNode* p): node(p),isFirst(true){}
};
vector<int> postorderTraversal(TreeNode* root) {
vector<int> a;
stack<BTNode*> s;
TreeNode* p=root;
BTNode*temp;
while(p!=NULL || !s.empty())
{
while(p)
{
BTNode* b=new BTNode(p);
s.push(b);
p=p->left;
}
if(!s.empty())
{
temp=s.top();
s.pop();
if(temp->isFirst==true)
{
temp->isFirst=false;
s.push(temp);
p=temp->node->right;
}
else
{
a.push_back(temp->node->val);
p=NULL;
}
}
}
return a;
}
这里多定义了一个结构体,里面包含了一个标志位isFirst,用来判断这个根节点是不是第一次来到栈顶,如果是第一次,isFirst==true,我们需要继续遍历此节点的右子树,并将其置位为false,这个时候要注意,前面已经将此节点pop出来了,要再次将其push到栈中,如果是第二次,就证明它的左右子树都已经遍历过了,所以就直接将此节点的值打印就好了。
第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。
vector<int> postorderTraversal(TreeNode* root) {
stack<TreeNode*> s;
TreeNode *cur=NULL; //当前结点
TreeNode *pre=NULL; //前一次访问的结点
vector<int> a;
s.push(root);
while(root && !s.empty())
{
cur=s.top();
if((cur->left==NULL&&cur->right==NULL)||(pre!=NULL &&(pre==cur->left||pre==cur->right)))
{
a.push_back(cur->val); //如果当前结点没有孩子结点或者孩子节点都已被访问过
s.pop();
pre=cur;
}
else
{
if(cur->right!=NULL)
s.push(cur->right);
if(cur->left!=NULL)
s.push(cur->left);
}
}
return a;
}
这个思路很好,目的也是要保证遍历过程的正确性,多使用了一个指针pre来存储前一次访问的节点,这样就可以判断此节点的右子树有没有被访问过。判断条件中
(pre!=NULL &&(pre==cur->left||pre==cur->right))
很难理解,一开始会想,这里的pre==cur->left是错误的,因为如果我前一个访问的是该节点的左孩子,那就可以直接访问该节点吗,怎么可能呢。仔细想,就是这样的。因为这种情况只可能出现在,该节点没有右孩子,所以上一个访问完左孩子,直接就可以访问该节点。如果有右孩子在,上一个访问的节点不可能是左孩子,因为右孩子是在此节点之后打入栈中的,会更早的出现在栈顶。
Leetcode(145)-二叉树的后序遍历的更多相关文章
- LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)
145. 二叉树的后序遍历 145. Binary Tree Postorder Traversal 题目描述 给定一个二叉树,返回它的 后序 遍历. LeetCode145. Binary Tree ...
- Java实现 LeetCode 145 二叉树的后序遍历
145. 二叉树的后序遍历 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成 ...
- LeetCode 145 二叉树的后序遍历(非递归)
题目: 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路: 1 ...
- 【leetcode 145. 二叉树的后序遍历】解题报告
前往二叉树的:前序,中序,后序 遍历算法 方法一:递归 vector<int> res; vector<int> postorderTraversal(TreeNode* ro ...
- Leetcode 145. 二叉树的后序遍历
题目链接 https://leetcode-cn.com/problems/binary-tree-postorder-traversal/description/ 题目描述 给定一个二叉树,返回它的 ...
- LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)
题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 后 ...
- LeetCode 145. 二叉树的后序遍历 (用栈实现后序遍历二叉树的非递归算法)
题目链接:https://leetcode-cn.com/problems/binary-tree-postorder-traversal/ 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [ ...
- LeetCode 145 ——二叉树的后序遍历
1. 题目 2. 解答 2.1. 递归法 定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么 递归得到其左子树的数据向量 temp,将 temp 合并到 data 中去 递归得到 ...
- LeetCode:二叉树的后序遍历【145】
LeetCode:二叉树的后序遍历[145] 题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很 ...
- 【LeetCode】145. 二叉树的后序遍历
145. 二叉树的后序遍历 知识点:二叉树:递归:Morris遍历 题目描述 给定一个二叉树的根节点 root ,返回它的 后序 遍历. 示例 输入: [1,null,2,3] 1 \ 2 / 3 输 ...
随机推荐
- openshift 3.11安装部署
openshift 3.11 安装部署 openshift安装部署 1 环境准备(所有节点) openshift 版本 v3.11 1.1 机器环境 ip cpu mem hostname OSsys ...
- centos7搭建dolphinscheduler集群
一.简述 Apache DolphinScheduler是一个分布式去中心化,易扩展的可视化DAG工作流任务调度系统.致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中开箱即用.有 ...
- Java并发编程常识
这是why的第 85 篇原创文章 写中间件经常要做两件事: 1.延迟加载,在内存缓存已加载项. 2.统计调用次数,拦截并发量. 就这么个小功能,团队里的人十有八九写错. 上面这句话不是我说的,是梁飞在 ...
- C++中输出变量类型的方法
C++中输出变量类型的方法 在c++中输出变量或者数据类型,使用typeid().name()的方法.如下例子: #include <iostream> #include <stri ...
- 并发编程常用工具类(二) SymaPhore实现线程池
1.symaPhore简介 symaphore(信号量)用来控制同时访问某个资源的线程数量,一般用在并发流量控制.个人对它的理解相当于是接待室每次只能接待固定数量的人,当达到最高接待数的时候,其他人就 ...
- CACTI优化-流量接口统计total输入和输出流量数据
看图,没有优化前(没有显示流入和流出的总流量是多少): 优化后(有显示流入和流出总流量统计): 如何实现呢?本节就是处理的过程小结.第一步:登陆cacti管理平台进入控制台->模板->图形 ...
- 快速排序与荷兰国旗及Partition问题
快速排序与荷兰国旗及Partition问题 需求: 1.Partition过程 给定一个数组arr,和一个整数num.请把小于等于num的数放在数组的左边,大于num的数放在数组的右边. 要求额外空间 ...
- 【.NET 与树莓派】i2c(IIC)通信
i2c(或IIC)协议使用两根线进行通信(不包括电源正负极),它们分别为: 1.SDA:数据线,IIC 协议允许在单根数据线上进行双向通信--这条线既可以发送数据,也可以接收数据. 2.SCL:时钟线 ...
- Spring整合SpringMVC + Mybatis基础框架的配置文件
目录 前言 1. Mybatis层编写 2. Spring层编写 1. Spring整合Mybatis 2. Spring整合service 3. SpringMVC层编写 1. 编写web.xml ...
- python 中excel表格的操作【转载】
传说中python操作ms office功能最强大的是win32com,但只能要ms上使用. 不过对于比较简单的需求显得有些小题大作.那么来看下简单的,分别是xlrd和xlwt模块, 不过暂时只支持e ...