Hiho1422 Harmonic Matrix Counter (高斯消元)
16年北京站A题 真的难啊..
题意:
定义和谐矩阵 就是每个元素和上下左右的xor值=0
输出一个超大数 然后最多800个询问 求字典序第k小的和谐矩阵 x y位置上的数
题解:
首先这个超大数的范围其实给了提示 $2^{800}$ 我们刚好想到枚举第一行 就有这么多种
确实 我们很容易发现 枚举了第一行之后 整个矩阵就可以算出来了
然后现在就要引出一个子题 P3164
关于这个子题 在2020年5月份之前洛谷上的题解都不是太正的做法
正确做法是 把第一行的每个元素当作一个未知数 然后可以推到第n行
用第n行是和谐矩阵元素的关系得到m个方程式 高斯消元解之
我们再回到这个题 我们同样可以用这样的方法 高斯消元解之 然后我们开始写了!
先用高斯消元解出系数 然后把10进制的大数转化为二进制 为什么这题有第k小呢 因为我们解出了自由元啊!
如果自由元所能提供的解 小于k就直接无解了
然后我们惊奇的发现 字典序第k小的二进制刚好就是这个问题自由元的解 一一对应填进去就行了
然后这样交上去会得到 WA!!
为什么呢? 因为我们正常解出的自由元 所对应的未知数 实际上是可以提前更换位置的啊!
那么我们可以把自由元放在最前面 以得到字典序最小


#include <stdio.h>
#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int MAXN = 805; int n, m, q, x, y, len, rk, blen;
bitset<MAXN> a[MAXN][MAXN];
bitset<MAXN> b[MAXN];
int ans[MAXN];
int fr[MAXN];
char s[MAXN];
int t[MAXN], bit[MAXN << 3]; int dx[] = {-1, -1, -1, -2};
int dy[] = {-1, 0, 1, 0}; bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
} void gauss() {
rk = 0;
for(int i = 1, now = m; i <= m && now; now--) {
for(int j = i; j <= m; j++) {
if(b[j][now]) {
std::swap(b[j], b[i]);
break;
}
}
if(!b[i][now]) {
//fr[now] = 1;
continue;
}
for(int j = i + 1; j <= m; j++) {
if(b[j][now]) {
b[j] ^= b[i];
}
}
fr[now] = i;
i++; rk++;
}
} void decode() {
blen = 0;
int llen = strlen(s + 1); memset(bit, 0, sizeof(bit));
for(int i = 1; i <= llen; i++) t[i] = s[llen - i + 1] - '0';
t[1]--;
int now = 1; while(t[now] < 0) t[now] += 10, now++, t[now]--;
while(llen && !t[llen]) llen--; while(llen) {
if(t[1] & 1) bit[++blen] = 1;
else bit[++blen] = 0; int res = 0;
for(int i = llen; i >= 1; i--) {
int tmp = (t[i] + res * 10) / 2;
res = (t[i] + res * 10) % 2;
t[i] = tmp;
}
while(llen && !t[llen]) llen--;
}
} void get() {
blen = max(blen, m - rk);
memset(ans, 0, sizeof(ans));
for(int i = 1; i <= m; i++) if(!fr[i]) ans[i] = bit[blen--];
for(int i = 1; i <= m; i++) {
if(fr[i])
for(int j = i - 1; j; j--) {
if(b[fr[i]][j]) ans[i] ^= ans[j];
}
}
} int main() {
while(~scanf("%d%d%d", &n, &m, &q)) {
memset(fr, 0, sizeof(fr));
for(int i = 1; i <= m; i++) b[i].reset();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
a[i][j].reset();
for(int i = 1; i <= m; i++) a[1][i][i] = 1; for(int i = 2; i <= n; i++) {
for(int j = 1; j <= m; j++) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if(check(nx, ny)) a[i][j] ^= a[nx][ny];
}
}
}
for(int i = 1; i <= m; i++) b[i] = a[n][i];
for(int i = 1; i <= m; i++) {
if(n - 1 >= 1) b[i] ^= a[n - 1][i];
if(i - 1 >= 1) b[i] ^= a[n][i - 1];
if(i + 1 <= m) b[i] ^= a[n][i + 1];
}
gauss();
//for(int i = 1; i <= m; i++) cout << fr[i] << " "; puts(""); //cout << m - rk << " ??" << endl;
for(int cas = 1; cas <= q; cas++) {
scanf("%s%d%d", s + 1, &x, &y);
decode();
//cout << "blen =" << blen <<endl;
if(m - rk < blen) printf("?");
else {
get();
/*
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
int res = 0;
for(int k = 1; k <= m; k++)
if(a[i][j][k]) res ^= ans[k];
printf("%d ", res);
}
puts("");
}*/ int res = 0;
for(int i = 1; i <= m; i++) if(a[x][y][i]) res ^= ans[i];
printf("%d", res);
}
}
puts("");
}
return 0;
}
/*
3 5 10
0 0 0 2 1
1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 1 1
0 0 1 1 1
0 1 0 1 0
1 1 1 0 0
3 1 1
0 1 0 0 0
1 1 1 0 0
0 0 0 1 0
4 1 1
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
5 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
6 1 1
1 0 1 1 0
1 0 0 0 1
0 1 1 0 1
7 1 1
1 1 0 0 0
0 0 1 0 0
1 0 1 1 0
8 1 1
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
*/
Hiho1422 Harmonic Matrix Counter (高斯消元)的更多相关文章
- 算法竞赛进阶指南0x35高斯消元与线性空间
高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...
- Matrix 高斯消元Gaussian elimination 中的complete pivoting和partial pivoting
首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first elem ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- UVALive 6449 IQ Test --高斯消元?
题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个 ...
- USACO 3.2 ratios 高斯消元
题目原意很简单,就是解一个三元一次方程组 直接高斯消元解方程组,枚举最后一列的倍数(k) 注意double的精度,有很多细节需要处理 /* PROB:ratios LANG:C++ */ #inclu ...
- HDU 5833 Zhu and 772002 (高斯消元)
Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...
- 【高斯消元】兼 【期望dp】例题
[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $ ...
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
- 高斯消元 & 线性基【学习笔记】
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...
随机推荐
- VsCode配置Go语言插件
前言 宇宙第一IDE对于笔记本来说还是太过沉重了 VsCode虽然差了点但是胜在插件多且够轻量 VsCode的安装/汉化参考我之前的博客 https://www.cnblogs.com/chnmig/ ...
- Approach for Unsupervised Bug Report Summarization 无监督bug报告汇总方法
AUSUM: approach for unsupervised bug report summarization 1. Abstract 解决的bug被归类以便未来参考 缺点是还是需要手动的去细读很 ...
- C++中的extern“C”
首先引入extern"C"的官方解释 extern "C" is meant to be recognized by a C++ compiler and to ...
- selenium自动化 | 通过获取cookies登录
>>>登录百度<<<#获取登录成功后的cookies def get_cookies(): driver.get(bd_url) driver.implicitly ...
- Linux 防火墙基于 CentOS7 的防火墙操作命令
防火墙服务操作命令 重启防火墙 systemctl restart firewalld 查看防火墙状态 systemctl status firewalld 开启.关闭.重启防火墙 # 开启 serv ...
- Windows系统使用运行框运行程序
配置步骤 1. 在非系统盘创建一个新文件夹,自定义名称.将需要使用运行框启动的程序或文件放入文件夹,并将其更改为自己容易记忆的名称 2. 创建环境变量 右击 "此电脑" → &qu ...
- 词嵌入之GloVe
什么是GloVe GloVe(Global Vectors for Word Representation)是一个基于全局词频统计(count-based & overall statisti ...
- POJ1629:picnic planning
题目描述 矮人虽小却喜欢乘坐巨大的轿车,轿车大到可以装下无论多少矮人.某天,N(N≤20)个矮人打算到野外聚餐.为了 集中到聚餐地点,矮人A 有以下两种选择 1)开车到矮人B家中,留下自己的轿车在矮人 ...
- 镍氢可充电电池2.4V转3.3V,2V转3.3V稳压供电输出电路图
PW5100可以实现2.4V转3.3V,2V转3.3V的稳压电源电路,输出电流500MA.静态电流10uA,SOT23-5封装.输出纹波低,轻载性能高(轻载电感推荐6.8UH-10UH). PW510 ...
- Django-html文件实例
1.实例1,登陆界面 <!DOCTYPE html> <head> <meta http-equiv="content-type" content=& ...