Hiho1422 Harmonic Matrix Counter (高斯消元)
16年北京站A题 真的难啊..
题意:
定义和谐矩阵 就是每个元素和上下左右的xor值=0
输出一个超大数 然后最多800个询问 求字典序第k小的和谐矩阵 x y位置上的数
题解:
首先这个超大数的范围其实给了提示 $2^{800}$ 我们刚好想到枚举第一行 就有这么多种
确实 我们很容易发现 枚举了第一行之后 整个矩阵就可以算出来了
然后现在就要引出一个子题 P3164
关于这个子题 在2020年5月份之前洛谷上的题解都不是太正的做法
正确做法是 把第一行的每个元素当作一个未知数 然后可以推到第n行
用第n行是和谐矩阵元素的关系得到m个方程式 高斯消元解之
我们再回到这个题 我们同样可以用这样的方法 高斯消元解之 然后我们开始写了!
先用高斯消元解出系数 然后把10进制的大数转化为二进制 为什么这题有第k小呢 因为我们解出了自由元啊!
如果自由元所能提供的解 小于k就直接无解了
然后我们惊奇的发现 字典序第k小的二进制刚好就是这个问题自由元的解 一一对应填进去就行了
然后这样交上去会得到 WA!!
为什么呢? 因为我们正常解出的自由元 所对应的未知数 实际上是可以提前更换位置的啊!
那么我们可以把自由元放在最前面 以得到字典序最小
#include <stdio.h>
#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <bitset>
using namespace std;
const int MAXN = 805; int n, m, q, x, y, len, rk, blen;
bitset<MAXN> a[MAXN][MAXN];
bitset<MAXN> b[MAXN];
int ans[MAXN];
int fr[MAXN];
char s[MAXN];
int t[MAXN], bit[MAXN << 3]; int dx[] = {-1, -1, -1, -2};
int dy[] = {-1, 0, 1, 0}; bool check(int x, int y) {
if(x >= 1 && x <= n && y >= 1 && y <= m) return true;
return false;
} void gauss() {
rk = 0;
for(int i = 1, now = m; i <= m && now; now--) {
for(int j = i; j <= m; j++) {
if(b[j][now]) {
std::swap(b[j], b[i]);
break;
}
}
if(!b[i][now]) {
//fr[now] = 1;
continue;
}
for(int j = i + 1; j <= m; j++) {
if(b[j][now]) {
b[j] ^= b[i];
}
}
fr[now] = i;
i++; rk++;
}
} void decode() {
blen = 0;
int llen = strlen(s + 1); memset(bit, 0, sizeof(bit));
for(int i = 1; i <= llen; i++) t[i] = s[llen - i + 1] - '0';
t[1]--;
int now = 1; while(t[now] < 0) t[now] += 10, now++, t[now]--;
while(llen && !t[llen]) llen--; while(llen) {
if(t[1] & 1) bit[++blen] = 1;
else bit[++blen] = 0; int res = 0;
for(int i = llen; i >= 1; i--) {
int tmp = (t[i] + res * 10) / 2;
res = (t[i] + res * 10) % 2;
t[i] = tmp;
}
while(llen && !t[llen]) llen--;
}
} void get() {
blen = max(blen, m - rk);
memset(ans, 0, sizeof(ans));
for(int i = 1; i <= m; i++) if(!fr[i]) ans[i] = bit[blen--];
for(int i = 1; i <= m; i++) {
if(fr[i])
for(int j = i - 1; j; j--) {
if(b[fr[i]][j]) ans[i] ^= ans[j];
}
}
} int main() {
while(~scanf("%d%d%d", &n, &m, &q)) {
memset(fr, 0, sizeof(fr));
for(int i = 1; i <= m; i++) b[i].reset();
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
a[i][j].reset();
for(int i = 1; i <= m; i++) a[1][i][i] = 1; for(int i = 2; i <= n; i++) {
for(int j = 1; j <= m; j++) {
for(int k = 0; k < 4; k++) {
int nx = i + dx[k];
int ny = j + dy[k];
if(check(nx, ny)) a[i][j] ^= a[nx][ny];
}
}
}
for(int i = 1; i <= m; i++) b[i] = a[n][i];
for(int i = 1; i <= m; i++) {
if(n - 1 >= 1) b[i] ^= a[n - 1][i];
if(i - 1 >= 1) b[i] ^= a[n][i - 1];
if(i + 1 <= m) b[i] ^= a[n][i + 1];
}
gauss();
//for(int i = 1; i <= m; i++) cout << fr[i] << " "; puts(""); //cout << m - rk << " ??" << endl;
for(int cas = 1; cas <= q; cas++) {
scanf("%s%d%d", s + 1, &x, &y);
decode();
//cout << "blen =" << blen <<endl;
if(m - rk < blen) printf("?");
else {
get();
/*
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
int res = 0;
for(int k = 1; k <= m; k++)
if(a[i][j][k]) res ^= ans[k];
printf("%d ", res);
}
puts("");
}*/ int res = 0;
for(int i = 1; i <= m; i++) if(a[x][y][i]) res ^= ans[i];
printf("%d", res);
}
}
puts("");
}
return 0;
}
/*
3 5 10
0 0 0 2 1
1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 1 1
0 0 1 1 1
0 1 0 1 0
1 1 1 0 0
3 1 1
0 1 0 0 0
1 1 1 0 0
0 0 0 1 0
4 1 1
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
5 1 1
1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
6 1 1
1 0 1 1 0
1 0 0 0 1
0 1 1 0 1
7 1 1
1 1 0 0 0
0 0 1 0 0
1 0 1 1 0
8 1 1
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
*/
Hiho1422 Harmonic Matrix Counter (高斯消元)的更多相关文章
- 算法竞赛进阶指南0x35高斯消元与线性空间
高斯消元 目录 高斯消元 ACWing207. 球形空间产生器(点击访问) 求解思路 代码 ACWing208. 开关问题(点击访问) 思路 代码 总结 欣赏 线性空间 定义 ACWing209. 装 ...
- Matrix 高斯消元Gaussian elimination 中的complete pivoting和partial pivoting
首先科普下Pivoting的含义 一般翻译为“主元”,在对矩阵做某种算法时,首先进行的部分元素.在线性规划的单纯形法中常见.wiki的解释如下:Pivot element(the first elem ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
- UVALive 6449 IQ Test --高斯消元?
题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个 ...
- USACO 3.2 ratios 高斯消元
题目原意很简单,就是解一个三元一次方程组 直接高斯消元解方程组,枚举最后一列的倍数(k) 注意double的精度,有很多细节需要处理 /* PROB:ratios LANG:C++ */ #inclu ...
- HDU 5833 Zhu and 772002 (高斯消元)
Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...
- 【高斯消元】兼 【期望dp】例题
[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $ ...
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
- 高斯消元 & 线性基【学习笔记】
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017- ...
随机推荐
- B树与B+树区别辨析
我们都知道,innodb中的索引结构使用的是B+树.B+树是一种B树的变形树,而B树又是来源于平衡二叉树.相较于平衡二叉树,B树更适合磁盘场景下文件索引系统.那为什么B树更适合磁盘场景,B+树又在B树 ...
- Mirai qq机器人 c++版sdk(即用c++写mirai)
Mirai机器人c++版 前言 类似教程 本文git,gitee地址 c++开发mirai 原理 大概流程 实现 如何使用 注意事项 常见错误 前言 改分支版本以及过时,暂时不再维护 请看最新版kot ...
- fatal error C1045: 编译器限制 : 链接规范嵌套太深
前言 我相信你是遇到了同样的问题.通过搜索引擎来到这里的.为了不耽误排查问题的时间,我提前说明一下这篇文章所描述的问题范畴: 我遇到的问题和 c++ 模板相关: 如果我减少传递的参数的话,是有可能避免 ...
- LeetCode145 二叉树的后序遍历
给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? /** * Defin ...
- MySQL的索引优化分析(二)
一.索引优化 1,单表索引优化 建表 CREATE TABLE IF NOT EXISTS article( id INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO ...
- 【UML】Use Case Diagrams
文章目录 Use Case Diagrams Introduction Use case Diagram Use Case Diagrams - Actors Use Case Diagrams – ...
- 基于Dockfile构建JAVA环境网站镜像
查看本地目录 [root@docker tomcat]# ls apache-tomcat-8.5.16.tar.gz Dockerfile jdk-8u91-linux-x64.tar.gz ...
- win32 修改Edit控件文本颜色与背景色
#define WM_CTLCOLORMSGBOX 0x0132 #define WM_CTLCOLOREDIT 0x0133 //编辑控件Edit #define WM_CTLCOLORLISTBO ...
- 在HTML中改变input标签中的内容
在HTML中改变input标签的内容 1.使用js自带的方法: document.getElementById('roadName').value='武汉路';//通过标签选择器来选择标签,然后设置值 ...
- Redis 实战 —— 07. 复制、处理故障、事务及性能优化
复制简介 P61 关系型数据库通常会使用一个主服务器 (master) 向多个从服务器 (slave) 发送更新,并使用从服务器来处理所有读请求. Redis 也采用了同样的方法实现自己的复制特性,并 ...