题目链接

设\(d[i]\)为将前 \(i\) 个玩具装入箱中所需得最小费用

容易得到动态转移方程:

\[d[i] = min(d[j] + (s[i]-s[j]+i-j-1-L)^2), (j<i)
\]

其中\(s[i] = \sum_1^iC[i]\),普通DP复杂度为\(O(n^2)\)。经过斜率优化后将变为\(O(n)\)。

仔细观察我们便于表示可以令\(f[i] = s[i]+i\)

那么式子变成了

\[d[i] = min(d[j] + (f[i]-f[j]-1-L)^2)
\]

我们讨论\(j_1,j_2(1\le j_1< j_2<i)\)决策,假设\(j_2\)要比\(j_1\)更优,那么有

\(d[j_1] + (f[i] -f[j_1]-1-L)^2 \ge d[j_2]+(f[i]-f[j_2]-1-L)^2\)

展开后得到

\(d[j_1] + f[i]^2 - 2\times f[i]\times (f[j_1]+1+L)+(f[j_1]+1+L)^2 \ge d[j_2]+f[i]^2-2\times f[i]\times (f[j_2]+1+L)+(f[j_2]+1+L)^2\)

移项后可得

\(2\cdot f[i]\ge {d[j_2]+(f[j_2]+1+L)^2-d[j_1]-(f[j_1]+1+L)^2 \over f[j_2]-f[j_1]}\)

令\(g[i] = f[i]+1+L\), 则有

\(2\cdot f[i]\ge {(d[j_2]+g[j_2])-(d[j_1]+g[j_1])\over f[j_2]-f[j_1]}\)

所以用一个队列维护决策集,当\(j_1<j_2\),并且上式满足时,\(j_1\) 出队。

又由于\(f[i]\)随\(i\)单调递增。所以计算\(d[i]\)之后要将 \(i\) 入队时,要及时排除掉不可能作为决策的元素。

如何计算?队尾的斜率也要满足单调性,保持跟\(f[i]\)的单调性一致即可。

#include <bits/stdc++.h>
using namespace std;
const int N = 50010;
typedef long long ll;
typedef long double db;
db c[N],d[N],f[N],s[N],g[N];
int n,L;
int q[N],l,r;
db sqr(db x){return x * x;}
db slope(int i,int j){
return ((d[i] + g[i]) - (d[j] + g[j])) / (f[i] - f[j]);
}
int main(){
scanf("%d%d",&n,&L);
l=r=1;
for(int i=1;i<=n;i++){
cin>>c[i];
s[i]=s[i-1] + c[i];
f[i] = s[i] + i;
g[i] = (f[i] + 1 + L) * (f[i] + 1 + L);
}
g[0] = (ll)(1+L)*(1+L);//注意0号元素的g值初始化
for(int i=1;i<=n;i++){
while(l < r && slope(q[l],q[l+1]) < 2 * f[i])l++;
int j = q[l];
d[i] = d[j] + sqr(f[i]-f[j]-1-L);
while(l < r && slope(q[r],q[r-1]) > slope(i,q[r-1]))r--;//满足队尾斜率单调性
q[++r] = i;//入队
}
printf("%lld\n",(ll)d[n]);
return 0;
}

P3195 [HNOI2008] 玩具装箱(斜率优化DP)的更多相关文章

  1. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

  2. luogu3195/bzoj1010 玩具装箱(斜率优化dp)

    推出来式子然后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  3. HNOI2008玩具装箱 斜率优化

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  4. BZOJ 1010 HNOI2008 玩具装箱 斜率优化

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...

  5. BZOJ1010玩具装箱 - 斜率优化dp

    传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...

  6. BZOJ 1010 玩具装箱(斜率优化DP)

    dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j] ...

  7. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  8. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  9. bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7874  Solved: 3047[Submit][St ...

  10. BZOJ 1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

随机推荐

  1. Eslint提示const关键字被保留

    如果在使用eslint的时候提示: error Parsing error: The keyword 'const' is reserved 有可能是因为eslint默认审查的es5,需要明确让他审查 ...

  2. 使用idea插件识别log文件的相关设置

    最近要读一些spring boot项目产生的log文件,众所周知,idea拥有强大的插件系统.当我打开log文件时,idea自动帮我推荐了ideolog这个插件. 但是当我安装好之后发现系统并不能完全 ...

  3. 04--Docker数据卷和数据卷容器

    .为什么要使用数据卷: Docker容器产生的数据,如果不通过docker commit生成新的镜像,使得数据做为镜像的一部分保存下来,那么当容器删除后,数据自然也就没有了.为了能保存数据在docke ...

  4. Sentry(v20.12.1) K8S 云原生架构探索,JavaScript 性能监控之采样 Transactions

    系列 Sentry-Go SDK 中文实践指南 一起来刷 Sentry For Go 官方文档之 Enriching Events Snuba:Sentry 新的搜索基础设施(基于 ClickHous ...

  5. 词嵌入之Word2Vec

    词嵌入要解决什么问题 在自然语言系统中,词被看作最为基本的单元,如何将词进行向量化表示是一个很基本的问题,词嵌入(word embedding)就是把词映射为低维实数域向量的技术. 下面先介绍几种词的 ...

  6. 1V转3V的低功耗升压芯片

       由于1V的电压很低,如果需要1V转3V的芯片,也是能找到的,一般要输入电压要选择余量,选择比1V更低的启动电压的1V转3V升压芯片.PW5100干电池升压IC就具有1V转3V,稳压输出3.3V的 ...

  7. SpringBoot单元测试的两种形式

    @ 目录 前言 demo环境 springbootTest Junit 总结 前言 最近公司要求2021年所有的项目代码单元测试覆盖率要达到90%,作为刚毕业的小白来说这简直就是噩梦啊,springb ...

  8. Qt QMenuBar和QMenu以及QAction巧妙的使用方法

    这里简单介绍QMenuBar和QMenu以及QAction是什么,其详细功能本文不做介绍,如果还不了解的朋友可以查阅Qt的帮助手册或浏览其它相关博客.如下图,软件中蓝色条框是QMenuBar用来承载Q ...

  9. Bitter.Core系列十一:Bitter ORM NETCORE ORM 全网最粗暴简单易用高性能的 NETCore 之 字段变更收集器

    有时候我们业务层需要记录 数据库表更改之前的值和更改之后的值的记录集合--此过程在 Bitter.Core 中有强有力的支持.Bitter.Core 字段收集器提供了方便简单易用的 收集对象在修改之前 ...

  10. 2 安装部署flume

    本文对flume进行安装部署 flume是什么?传送门:https://www.cnblogs.com/zhqin/p/12230301.html 0.要安装部署在日志所在的服务器,或者把日志发送到日 ...