dsu on tree

题目链接

点我跳转

题目大意

一棵根为 \(1\) 的树,每条边上有一个字符(\(a-v\)共\(22\)种)

一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串。

求每个子树中最长的Dokhtar-kosh路径的长度。

解题思路

\(dsu\) \(on\) \(tree\) + 状态压缩

1.重排后构成回文的条件为:

​ ①.每个字母出现的次数都为偶数 ②.一个字母出现次数为奇数,其余字母出现次数为偶数

2.字母的范围为 a ~ z , 把其转换成二进制状态(偶数为0,奇数为1)

​ 那么满足回文条件的二进制为 : 00...000 , 00..001 , 00..010 , ... , 10..000

3.维护一个从根节点到子节点u的前缀异或和数组 X

​ 那么 u 到 v 的简单路径的字母重排后的二进制形式为 X[u] ^ X[v]

4.节点 u 的答案有三种可能:

​ ①.它的两个不同分支的节点构成的简单路径 ②.它的一个分支到它本身构成的简单路径 ③.它的子节点的 ans

于是就可以定义 \(f_x\) 表示状态为 \(x\) 的节点的最大深度

那么当根节点为 \(rt\) 时 , 子节点 \(u\) 和 \(rt\) 产生的贡献为 ↓

if((x[u] ^ x[rt]) == 0) ma = max(ma , dep[u] - dep[rt]);
rep(i , 0 , 21) if((x[u] ^ x[rt]) == (1LL << i)) ma = max(ma , dep[u] - dep[rt]);

子节点 \(u\) 和 \(rt\) 的其它分支的产生贡献为 ↓

if(f[x[u]]) ma = max(ma , f[x[u]] + dep[u] - 2 * dep[rt]);
rep(i , 0 , 21)
{
int now = f[x[u] ^ (1LL << i)];
if(now) ma = max(ma , dep[u] + now - 2 * dep[rt]);
}

\(rt\) 由它轻子儿子传递上来的贡献为 ↓

for(int i = head[rt] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == hson[rt]) continue ;
dsu(v , rt , 0);
ans[rt] = max(ans[rt] , ans[v]);
}

\(rt\) 由它重儿子传递上来的贡献为 ↓

if(hson[rt]) dsu(hson[rt] , rt , 1) , ans[rt] = max(ans[rt] , ans[hson[rt]]) , HH = hson[rt];
if(f[x[rt]]) ma = max(ma , f[x[rt]] - dep[rt]);
rep(i , 0 , 21) if(f[x[rt] ^ (1LL << i)]) ma = max(ma , f[x[rt] ^ (1LL << i)] - dep[rt]);

因为要计算不同分支的两点产生的贡献,所以需要先对一个分支统计完贡献后,再添加它的信息

(事实上相同分支内的节点答案的在根节点为 \(rt\) 的子节点的时候就已经算过了)

AC_Code

#include<bits/stdc++.h>
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define int long long
using namespace std;
const int N = 6e5 + 10;
struct Edge{
int nex , to;
}edge[N << 1];
int head[N] , TOT;
void add_edge(int u , int v)
{
edge[++ TOT].nex = head[u] ;
edge[TOT].to = v;
head[u] = TOT;
}
int hson[N] , HH , sz[N] , dep[N] , x[N];
int n , ma , a[N] , ans[N] , f[N * 20];
void dfs(int u , int far , int now)
{
sz[u] = 1;
dep[u] = dep[far] + 1;
x[u] = now ^ a[u];
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far) continue ;
dfs(v , u , x[u]);
sz[u] += sz[v];
if(sz[v] > sz[hson[u]]) hson[u] = v;
}
}
void calc(int u , int far , int rt)
{
if(f[x[u]]) ma = max(ma , f[x[u]] + dep[u] - 2 * dep[rt]);
if((x[u] ^ x[rt]) == 0) ma = max(ma , dep[u] - dep[rt]);
rep(i , 0 , 21)
{
if((x[u] ^ x[rt]) == (1LL << i)) ma = max(ma , dep[u] - dep[rt]);
int now = f[x[u] ^ (1LL << i)];
if(now) ma = max(ma , dep[u] + now - 2 * dep[rt]);
}
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == HH) continue ;
calc(v , u , rt);
}
}
void change(int u , int far , int val)
{
if(val == 1) f[x[u]] = max(dep[u] , f[x[u]]);
else f[x[u]] = 0;
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == HH) continue ;
change(v , u , val);
}
}
void dsu(int u , int far , int op)
{
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == hson[u]) continue ;
dsu(v , u , 0);
ans[u] = max(ans[u] , ans[v]);
}
if(hson[u]) dsu(hson[u] , u , 1) , HH = hson[u] , ans[u] = max(ans[u] , ans[hson[u]]);
if(f[x[u]]) ma = max(ma , f[x[u]] - dep[u]);
rep(i , 0 , 21)
{
if(f[x[u] ^ (1LL << i)]) ma = max(ma , f[x[u] ^ (1LL << i)] - dep[u]);
}
for(int i = head[u] ; i ; i = edge[i].nex)
{
int v = edge[i].to;
if(v == far || v == hson[u]) continue ;
calc(v , u , u);
change(v , u , 1);
}
ans[u] = max(ans[u] , ma);
f[x[u]] = max(f[x[u]] , dep[u]);
HH = 0;
if(!op)
{
ma = 0;
change(u , far , -1);
}
}
signed main()
{
cin >> n;
rep(i , 2 , n)
{
int x ; char op;
cin >> x >> op;
add_edge(i , x) , add_edge(x , i);
a[i] = (1LL << (int)(op - 'a'));
}
dfs(1 , 0 , 0);
dsu(1 , 0 , 0);
rep(i , 1 , n) cout << ans[i] << " \n"[i == n];
return 0;
}

Codeforces741D的更多相关文章

  1. [Codeforces741D]Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths——dsu on tree

    题目链接: Codeforces741D 题目大意:给出一棵树,根为$1$,每条边有一个$a-v$的小写字母,求每个点子树中的一条最长的简单路径使得这条路径上的边上的字母重排后是一个回文串. 显然如果 ...

  2. codeforces741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  3. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

随机推荐

  1. CC2530定时器模模式最大值计算

    首先假设 频率: f 分频系数: n 间隔定时: s 周期: T 模模式最大值: N 因为 T = 1 / f 所以 s = ( n / f ) * N  =  n * N / f 由此可得 计算模模 ...

  2. CDH+Kylin三部曲之二:部署和设置

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. java程序练习:输入数字转换成中文输出(金额相关)

    //题目,做一个输入金额数字,输出转换成中文的金额名称.public class Test { public static void main(String[] args) { System.out. ...

  4. Eclipse IDE 使用指南:Git失误提交代码,撤销commit操作

    在Eclipse IDE使用Git Commit提交代码时把不需要的文件失误Commit了,比如.settings..classpath..project等文件. 如果是Commit提交代码到本地仓库 ...

  5. Java数据结构-00导论

    一个程序是怎样组成的呢?数据结构+算法=程序 一.什么是数据结构: 简单定义就是研究数据的存储方式:选择适当的数据结构可以提高计算机程序的运行效率(时间复杂度O)和存储效率(空间复杂度S). 二.数据 ...

  6. 专攻知识小点——回顾JavaWeb中的servlet(三)

    HttpSession基本概述 ** ** 1.HttpSession:是服务器端的技术.和Cookie一样也是服务器和客户端的会话.获得该对象是通过HTTPServletRequest的方法getS ...

  7. Docker学习笔记之--.Net Core项目容器连接mssql容器(环境:centos7)

    前一节演示在docker中安装mssql,地址:Docker学习笔记之--安装mssql(Sql Server)并使用Navicat连接测试(环境:centos7) 本节演示 .Net Core项目容 ...

  8. 使用 tabindex 配合 focus-within 巧妙实现父选择器

    本文将介绍一个不太实用的小技巧,使用 tabindex 配合 :focus-within 巧妙实现父选择器. CSS 中是否存在父选择器? 这是一个非常经典的问题,到目前为止,CSS 没有真正意义上被 ...

  9. xlrd、xlwt常用命令

    # -*- coding: utf-8 -*- import xlrd import xlwt from datetime import date,datetime   def read_excel( ...

  10. STM32入门系列-GPIO结构

    已经了解了STM32 GPIO的基本概念及引脚分类.现在来看下STM32 GPIO内部的结构是怎样的.IO端口位的基本结构如下图所示. 从图中可以看出GPIO内部结构还是比较复杂的,只要将这张GPIO ...