Kaggle-pandas(4)
Grouping-and-sorting
教程
映射使我们可以一次将整个列中的数据转换为DataFrame或Series中的一个值。 但是,通常我们希望对数据进行分组,然后对数据所在的组进行特定的操作。
正如您将学到的,我们使用groupby()操作来完成此操作。 我们还将介绍一些其他主题,例如为DataFrames编制索引的更复杂方法以及如何对数据进行排序。
Groupwise analysis
到目前为止,我们一直在使用的一个函数是value_counts()函数。 我们可以通过执行以下操作来复制value_counts()的功能:
reviews.groupby('points').points.count()
groupby()创建了一组reviews,这些reviews为给定的葡萄酒分配了相同的分值。 然后,对于每个组,我们都抓住了points()列并计算了它出现的次数。 value_counts()只是该groupby()操作的快捷方式。
我们可以将之前使用的任何汇总功能与此数据一起使用。 例如,要获取每个点值类别中最便宜的葡萄酒,我们可以执行以下操作:
reviews.groupby('points').price.min()
您可以将我们生成的每个组视为DataFrame的一部分,其中仅包含具有匹配值的数据。 我们可以使用apply()方法直接访问此DataFrame,然后我们可以按照自己认为合适的任何方式来操作数据。 例如,这是一种从数据集中的每个酿酒厂中选择第一批葡萄酒名称的方法:
reviews.groupby('winery').apply(lambda df: df.title.iloc[0])
为了获得更细粒度的控制,您还可以按多个列进行分组。 例如,以下是我们如何按国家和省份挑选最佳葡萄酒的方法:
reviews.groupby(['country', 'province']).apply(lambda df: df.loc[df.points.idxmax()])
分类结果如下
另一个值得一提的groupby()方法是agg(),它使您可以同时在DataFrame上运行许多不同的函数。 例如,我们可以生成数据集的简单统计摘要,如下所示:
reviews.groupby(['country']).price.agg([len, min, max])
Multi-indexes
到目前为止,在所有示例中,我们一直在使用带有单标签索引的DataFrame或Series对象。 groupby()稍有不同,因为它取决于我们运行的操作,有时会导致所谓的多索引。
多索引与常规索引的不同之处在于它具有多个级别。 例如:
countries_reviewed = reviews.groupby(['country', 'province']).description.agg([len])
countries_reviewed
mi = countries_reviewed.index
type(mi)
Output:
pandas.core.indexes.multi.MultiIndex
多索引有几种方法来处理它们的分层结构,而单级索引则没有。 它们还需要两个级别的标签才能检索值。 对于刚接触pandas的用户来说,处理多索引输出是常见的“陷阱”。
pandas文档的“多索引/高级选择”部分中详细说明了多索引的使用案例以及使用说明。
但是,通常,您最常使用的多索引方法是一种可转换回常规索引的方法,即reset_index()方法:
Sorting
再次查看countries_reviewed,我们可以看到分组以索引顺序而不是以值顺序返回数据。 也就是说,在输出groupby的结果时,行的顺序取决于索引中的值,而不取决于数据中的值。
要按需要的顺序获取数据,我们可以自己对其进行排序。 sort_values()方法很方便。
countries_reviewed = countries_reviewed.reset_index()
countries_reviewed.sort_values(by='len')
Output:
要按索引值排序,请使用配套方法sort_index()。 此方法具有相同的参数和默认顺序:
countries_reviewed.sort_index()
Output:
练习
1
Who are the most common wine reviewers in the dataset? Create a Series
whose index is the taster_twitter_handle
category from the dataset, and whose values count how many reviews each person wrote.
# Your code here
reviews_written = reviews.groupby("taster_twitter_handle").taster_twitter_handle.count()
print(reviews_written) # Check your answer
q1.check()
2.
What is the best wine I can buy for a given amount of money? Create a Series whose index is wine prices and whose values is the maximum number of points a wine costing that much was given in a review. Sort the values by price, ascending (so that 4.0 dollars is at the top and 3300.0 dollars is at the bottom).
best_rating_per_price = reviews.groupby('price')['points'].max().sort_index()
# Check your answer
q2.check()
3.
What are the minimum and maximum prices for each variety
of wine? Create a DataFrame
whose index is the variety
category from the dataset and whose values are the min
and max
values thereof.
price_extremes = reviews.groupby('variety')["price"].agg([min,max]) # Check your answer
q3.check()
4.
What are the most expensive wine varieties? Create a variable sorted_varieties containing a copy of the dataframe from the previous question where varieties are sorted in descending order based on minimum price, then on maximum price (to break ties).
sorted_varieties = price_extremes.sort_values(by=['min', 'max'], ascending=False)
# Check your answer
q4.check()
5.
Create a Series
whose index is reviewers and whose values is the average review score given out by that reviewer. Hint: you will need the taster_name
and points
columns.
reviewer_mean_ratings = reviews.groupby('taster_name').points.mean() # Check your answer
q5.check()
6.
What combination of countries and varieties are most common? Create a Series
whose index is a MultiIndex
of {country, variety}
pairs. For example, a pinot noir produced in the US should map to {"US", "Pinot Noir"}
. Sort the values in the Series
in descending order based on wine count.
country_variety_counts = reviews.groupby(['country', 'variety']).size().sort_values(ascending=False) # Check your answer
q6.check()
Kaggle-pandas(4)的更多相关文章
- 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享
pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...
- kaggle入门2——改进特征
1:改进我们的特征 在上一个任务中,我们完成了我们在Kaggle上一个机器学习比赛的第一个比赛提交泰坦尼克号:灾难中的机器学习. 可是我们提交的分数并不是非常高.有三种主要的方法可以让我们能够提高他: ...
- Kaggle入门教程
此为中文翻译版 1:竞赛 我们将学习如何为Kaggle竞赛生成一个提交答案(submisson).Kaggle是一个你通过完成算法和全世界机器学习从业者进行竞赛的网站.如果你的算法精度是给出数据集中最 ...
- 如何使用Python在Kaggle竞赛中成为Top15
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...
- kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...
- kaggle& titanic代码
这两天报名参加了阿里天池的’公交线路客流预测‘赛,就顺便先把以前看的kaggle的titanic的训练赛代码在熟悉下数据的一些处理.题目根据titanic乘客的信息来预测乘客的生还情况.给了titan ...
- 初窥Kaggle竞赛
初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...
- 逻辑回归应用之Kaggle泰坦尼克之灾(转)
正文:14pt 代码:15px 1 初探数据 先看看我们的数据,长什么样吧.在Data下我们train.csv和test.csv两个文件,分别存着官方给的训练和测试数据. import pandas ...
- kaggle之Grupo Bimbo Inventory Demand
Grupo Bimbo Inventory Demand kaggle比赛解决方案集合 Grupo Bimbo Inventory Demand 在这个比赛中,我们需要预测某个产品在某个销售点每周的需 ...
- kaggle之人脸特征识别
Facial_Keypoints_Detection github code facial-keypoints-detection, 这是一个人脸识别任务,任务是识别人脸图片中的眼睛.鼻子.嘴的位置. ...
随机推荐
- SQLserver-MySQL的区别和用法
对于程序开发人员而言,目前使用最流行的两种后台数据库即为MySQL and SQL Server.这两者最基本的相似之处在于数据存储和属于查询系统.你可以使用SQL来访问这两种数据库的数据,因为它们都 ...
- day8 for循环+基本数据类型(上)
目录 一 for循环 1 什么是for循环 2 为什么要有for循环 3 如何使用for循环 二 基本数据类型的内置方法 2 字符串 2.1 类型转化 2.2 内置方法(优先掌握) 2.2.1 按索引 ...
- python中常见的数据类型
str 常用方法 1. 索引(下标) s = 'ABCDEFGHIJKLMN's1 = s[0]print('s[0] = ' + s1) #s[0] = A 2. 切片:顾头不顾尾 s = 'A ...
- Python并发编程——多线程与协程
Pythpn并发编程--多线程与协程 目录 Pythpn并发编程--多线程与协程 1. 进程与线程 1.1 概念上 1.2 多进程与多线程--同时执行多个任务 2. 并发和并行 3. Python多线 ...
- Jmeter(十六) - 从入门到精通 - JMeter前置处理器(详解教程)
1.简介 前置处理器是在发出“取样器请求”之前执行一些操作.如果将前置处理器附加到取样器元件,则它将在该取样器元件运行之前执行.前置处理器最常用于在取样器请求运行前修改其设置,或更新未从响应文本中提取 ...
- javascript基础(一): 浏览器控制台使用Element,console,network,source,application
console https://www.jianshu.com/p/67bcb481d1c5 Element https://www.kkpan.com/article/1845.html
- mysql实现主从复制/主从同步
业务场景 小公司业务代码存于一个服务器上,而这个服务器有的时候回宕机,导致业务停顿,造成影响.这个时候 就需要做高可用 两个ngix+两个tomcat+两个mysql实现高可用,避免单点问题.中间使用 ...
- Cyber Security - Palo Alto Security Policies(2)
Task 3 The SOC(Security Operation Center) monitoring team dashboard reported more 1,000 requests to ...
- 深入浅出Semaphore源码解析
Semaphore通过permits的值来限制线程访问临界资源的总数,属于有限制次数的共享锁,不支持重入. 前提条件 在理解Semaphore时需要具备一些基本的知识: 理解AQS的实现原理 之前有写 ...
- python监控服务器应用日志,推送钉钉机器人,实时关注日志异常
生产环境多台服务器上部署了多个应用,日志出现报错时,无法及时反馈到开发人员.部署一个大型的运维监控应用,不但耗资源,而且配置也不简单. 简简单单写个python脚本来监控服务器日志就简单多了,废话不多 ...