CRAQ 论文总结

说明:本文为论文 《Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads》 的个人理解,难免有理解不到位之处,欢迎交流与指正 。

论文地址CRAQ Paper


0. 简介

Chain Replication with Apportioned Queries (CRAQ) 是一种对链式复制的改进,它通过在所有对象副本上分配负载,在保持强一致性的同时极大地提高了读吞吐量。

本文主要对链式复制、CRAQ 原理以及 CRAQ 的一致性模型做出总结。


1. 对象存储

基于对象 的存储中,数据作为整个单元呈现给应用程序。

对象存储支持两种基本原语:

  • readquery 操作返回存储在对象名称下的数据块
  • writeupdate 操作更改单个对象的状态

对象存储更适合于平面名称空间,例如键值数据库,而不是层次目录结构。对象存储简化了支持整个对象修改的过程,通常,它们只需要考虑对特定对象的修改顺序,而不是整个存储系统。为每个对象提供一致性保证成本要低得多。


2. 一致性模型

本文涉及到的两种一致性模型为:

  • 强一致性:系统保证对一个对象的读写操作都以顺序执行,并且对于一个对象的读操作总是会观察到最新被写入的值。
  • 最终一致性:在系统中,对一个对象的写入仍是按顺序在所有节点上应用的,但对不同节点的最终一致性读取可能会在一段时间内(即,在写操作应用于所有节点之前)返回过时的数据。但是,一旦所有副本都接收到写入操作,则读操作将不会返回比最新提交的写操作更早的版本。事实上,如果一个 client 维护与特定节点的会话,那么它也会看到单调的读一致性。

3. 链式复制

链式复制 (Chain Replication、CR) 是一种跨多个节点复制数据的方法:

  • 节点形成一个长度为 C 的链
  • 链的头部节点处理来自客户端的所有写操作
  • 当一个节点接收到写操作时,它将传播到链中的每一个节点
  • 一旦写入到达尾部节点,它就被应用于链中的所有副本,并且被认为是提交的
  • 当尾节点提交写操作时,会向客户端发送一个回复
  • 尾部节点处理所有读操作,因此只有提交的值才能由读操作返回

链式复制实现了 强一致性:由于所有的读操作都是在尾部进行的,而所有写操作都在尾部提交,所以链尾可以简单地对所有操作应用一个总的顺序。

链式复制的简单拓扑使得写操作比提供强一致性的其他协议消耗更小。如在 Raft 中,leader 需要将每次写操作都发送给所有的 follower ,但是 CRAQ 中,head 只需要将每一次写操作发送一次;并且 Raftleader 需要处理读写操作,而 CRAQ 中的 head 只需要处理写操作。

链式复制的 故障恢复

  • 当头节点出故障时:后续节点取代它成为头节点,没有丢失的已提交写操作
  • 当尾节点出故障时:前一个节点取代它成为尾节点,没有丢失的写操作
  • 当中间节点故障时:从链中去掉,前一个节点需要重新发送最近的写操作

局限性:对一个对象的所有读取必须都要转到同一个节点,尾节点的负载很大。


4. CRAQ

4.1 CRAQ原理

CRAQ 是链式复制的一种改进,它允许链中的任何节点执行读操作:

  • CRAQ 每个节点可以存储一个对象的多个版本,每个版本都包含一个单调递增的版本号和一个附加属性( 标识 clean 还是 dirty

  • 当节点接收到对象的新版本时(通过沿向下传播的写操作),该节点将此最新版本附加到该对象的列表中

    • 如果节点不是尾节点,则将版本标记为 dirty ,并向后续节点传递写操作
    • 如果节点是尾节点,则将版本标记为 clean ,此时写操作是 已提交 的。然后,尾节点在链中往回发送 ACK 来通知其他节点提交
  • 当对象版本的 ACK 到达节点时,该节点会将对象版本标记为 clean 。然后,该节点可以删除该对象的所有先前版本

  • 当节点收到对象的读请求时:

    • 如果请求的对象的最新已知版本是干净的,则节点将返回此值
    • 否则,节点将与尾节点联系,询问尾节点上该对象的最后提交版本号,然后,节点返回该对象的此版本

4.2 CRAQ性能提升

CRAQ 相对于 CR 的吞吐量改进发生在两种不同情况下:

  • 读密集型工作负载:读操作可以在所有节点上执行,因此吞吐量与链长度呈线性比例关系
  • 写密集型工作负载:大量写操作的工作负载中,更容易读取到 dirty 数据,因此对尾节点的查询请求比较多。但是对尾节点查询的工作负载远低于所有读请求都由尾节点来执行的工作负载,因此 CRAQ 吞吐量高于 CR

4.3 CRAQ的一致性模型

对于读操作, CRAQ 支持三种一致性模型:

  • 强一致性4.1 中描述的读操作可以使每次读取都读到最新写入的数据,因此提供了强一致性
  • 最终一致性:允许节点返回未提交的新数据,即允许 client 可从不同的节点读到不一致的对象版本。但是对于一个 client 来说,由于它与节点建立会话,所以它的读操作是保证单调一致性的。
  • 带有最大不一致边界的最终一致性:允许节点返回未提交的新数据,但是有不一致性的限制,这个限制可以基于版本,也可以基于时间。如允许返回一段时间内新写入但未提交的数据。

4.4 split-brain 问题

若两个相邻节点之间的网络连接断开,后面的节点会想去成为头节点,这样就会产生两个头节点。

CRAQ 本身并不会解决这样的问题,所以需要外部的分布式协调服务来解决这一问题,如使用 Zookeeper 。由 Zookeeper 来决定链的组成,决定哪个节点是头、尾,并监控哪个节点出了故障。当发生网络故障时,由 Zookeeper 来决定链的新组成,而不是基于各节点对于网络情况的自身感知。


《Object Storage on CRAQ: High-throughput chain replication for read-mostly workloads》论文总结的更多相关文章

  1. 《Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases》论文总结

    Aurora总结 说明:本文为论文 <Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relation ...

  2. Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases

    INTRODUCTION   In modern distributed cloud services, resilience and scalability are increasingly ach ...

  3. Google Spanner vs Amazon Aurora: Who’ll Get the Enterprise?

    https://www.clustrix.com/bettersql/spanner-vs-aurora/ Google Spanner versus Amazon Aurora In July 20 ...

  4. Amazon Aurora解读(SIGMOD 2017)

    Amazon在SIGMOD 2017发表了论文<Amazon Aurora: DesignConsiderations for High Throughput Cloud-Native Rela ...

  5. 利用 AWS DMS 在线迁移 MongoDB 到 Amazon Aurora

    将数据从一种数据库迁移到另一种数据库通常都非常具有挑战性,特别是考虑到数据一致性.应用停机时间.以及源和目标数据库在设计上的差异性等因素.这个过程中,运维人员通常都希望借助于专门的数据迁移(复制)工具 ...

  6. (转)Amazon Aurora MySQL 数据库配置最佳实践

    转自:https://zhuanlan.zhihu.com/p/165047153 Amazon Aurora MySQL 数据库配置最佳实践 AWS云计算 ​ 已认证的官方帐号 1 人赞同了该文章 ...

  7. Game: Map Design Considerations 游戏地图设计指南

    依据前文伏击战场景手稿, 用Tile Studio "草草"制作出该场景的地图: 生成的C源码: #ifndef _open_war_1Gfx_c #define _open_wa ...

  8. 一篇文章带你看懂AWS re:Invent 2018大会,揭秘Amazon Aurora

    本文由云+社区发表 | 本文作者: 刘峰,腾讯云NewSQL数据库产品负责人.曾职于联想研究院,Teradata北京研发中心,从事数据库相关工作8年.2017年加入腾讯数据库产品中心,担任NewSQL ...

  9. 'Cloud Native': What It Means, Why It Matters

    When HP announced July 28 that it was acquiring ActiveState's PaaS business, senior vice president B ...

  10. On cloud, be cloud native

    本来不想起一个英文名,但是想来想去都没能想出一个简洁地表述该意思的中文释义,所以就用了一个英文名称,望见谅. Cloud Native是一个刚刚由VMware所提出一年左右的名词.其表示在设计并实现一 ...

随机推荐

  1. react后台管理系统路由方案及react-router原理解析

        最近做了一个后台管理系统主体框架是基于React进行开发的,因此系统的路由管理,选用了react-router(4.3.1)插件进行路由页面的管理配置. 实现原理剖析 1.hash的方式   ...

  2. cnblogs 博客爬取 + scrapy + 持久化 + 分布式

    目录 普通 scrapy 分布式爬取 cnblogs_spider.py 普通 scrapy # -*- coding: utf-8 -*- import scrapy from ..items im ...

  3. OKR-Periods of Words【KMP最小前后缀】

    OKR-Periods of Words 传送门:链接    来源:UPC 8180 题目描述 串是有限个小写字符的序列,特别的,一个空序列也可以是一个串.一个串P是串A的前缀,当且仅当存在串B,使得 ...

  4. Fibonacci(模板)【矩阵快速幂】

    Fibonacci 题目链接(点击) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20989   Accepted: 14 ...

  5. ViewDragHelper类的基本使用

    在android的开发包android.support.v4.widget中有一个ViewDragHelper类.这个类的作用是帮助我们处理View的拖拽滑动.在一个ViewGroup类的内部定义一个 ...

  6. equals与hashCode的区别

    equals与hashCode的区别 1.类中的equals方法是一定要重写/覆盖(Override)的,因为要让它按照设计的需求来根据特征值判断等价性. 这里的特征值,就是String类型的name ...

  7. VS2017未安装MFC解决方法

    VS2017未安装MFC解决方法 https://blog.csdn.net/u010921682/article/details/89847395

  8. Java并发编程:Callable、Future和FutureTask 实现龟兔赛跑

    1.不清楚的看博客http://www.cnblogs.com/dolphin0520/p/3949310.html 我们使用上面的代码来实现一个龟兔赛跑 package com.weiyuan.te ...

  9. Python3-shelve模块-持久化字典

    Python3中的shelve提供了持久化字典对象 和字典基本一个样,只不过数据保存在了文件中,没什么好说的,直接上代码 注: 1.打开文件后不要忘记关闭文件 2.键只能是字符串,值可以是任何值 3. ...

  10. Docker(五)Docker镜像讲解

    Docker镜像讲解 镜像概念 镜像是一种轻量级.可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码.运行时.库.环境变量和配置文件 Dock ...