题面

传送门:洛咕


Solution

调得我头大,我好菜啊

好吧,我们来颓柿子吧:

我们可以只旋转其中一个手环。对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的。

所以说,我们可以假设我们旋转\(B\)串,上下要加上的亮度差为\(p\),可以直接拍出一个最暴力的柿子:

设\(f(x)\)表示\(B\)串以\(x\)为开头的差异值,有:

\(f(x)=\sum_{i=0}^{x-1}(B[i]-A[i+n-x]+p)^2+\sum_{i=x}^{n-1}(B[i]-A[i-x]+p)^2\)

大力展开化简后有:

\(f(x)=\sum_{i=0}^{n-1}A[i]^2+\sum_{i=0}^{n-1}B[i]^2+n*p^2-2p\sum_{i=0}^{n-1}(A[i]-B[i])-2\sum_{i=0}^{x-1}(B[i]*A[i+n-x])-2\sum_{i=x}^{n-1}(B[i]*A[i-x])\)

前两项\(\sum_{i=0}^{n-1}A[i]^2+\sum_{i=0}^{n-1}B[i]^2\)显然\(O(n)预处理出来\)

中间两项\(n*p^2-2p\sum_{i=0}^{n-1}(A[i]-B[i])\)是一个关于\(p\)的二次函数,我们找最小值就好。(因为这题\(m\)非常小,我们也可以暴力枚举),复杂度\(O(1)\)或\(O(m)\)。

最后两项\(-2\sum_{i=0}^{x-1}(B[i]*A[i+n-x])-2\sum_{i=x}^{n-1}(B[i]*A[i-x])\)看起来非常像卷积,但是并不是,因此我们得做点处♂理。

蒟蒻本人是这样处理的:

首先,后面那个循环范围是肯定没法卷的,因此我们先把后面的循环处理一下得:

\(-2\sum_{i=0}^{x-1}(B[i]*A[i+n-x])-2\sum_{i=0}^{n-x-1}(A[i]*B[i+x])\)

然后我们可以考虑把前面那项的\(A\)反转(这样可以处理掉\(n\)来方便卷积),把后面那项的\(B\)反转(这样可以制造\(n\)与\(\sum\)对应)

\(-2\sum_{i=0}^{x-1}(B[i]*A'[x-1-i])-2\sum_{i=0}^{n-x-1}(A[i]*B'[n-1-i-x])\)

哦豁,卷积,搞定。

时间复杂度\(O(n*logn)\)


Code

我什么时候才能一次性写对FFT啊

//Luogu P3723 [AH2017/HNOI2017]礼物
//Jan,20th,2019
//颓柿子+FFT加速计算
#include<iostream>
#include<cstdio>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int M=50000+100;
const int N=M*4;
const double PI=acos(-1);
typedef complex <double> cp;
inline cp omega(int K,int n)
{
return cp(cos(2*PI*K/n),sin(2*PI*K/n));
}
void FFT(cp a[],int n,bool type)
{
static int tmp[N],num=n-1,len=0;
while(num!=0) num/=2,len++;
for(int i=0,j;i<=n;i++)
{
for(j=0,num=i;j<len;j++)
tmp[j]=num%2,num/=2;
reverse(tmp,tmp+len);
for(j=0,num=0;j<len;j++)
num+=tmp[j]*(1<<j);
if(i<num) swap(a[i],a[num]);
}
for(int l=2;l<=n;l*=2)
{
cp x0=omega(1,l);
if(type==true) x0=conj(x0);
int m=l/2;
for(int j=0;j<n;j+=l)
{
cp x(1,0);
for(int k=0;k<m;k++,x*=x0)
{
cp temp=x*a[j+k+m];
a[j+k+m]=a[j+k]-temp;
a[j+k]=a[j+k]+temp;
}
}
}
}
int n,m,a[N],b[N];
cp B1[N],A1[N],B2[N],A2[N];
long long ans;
int main()
{
freopen("3723.in","r",stdin); n=read(),m=read();
for(int i=0;i<n;i++)
a[i]=read();
for(int i=0;i<n;i++)
b[i]=read(); long long dif=0;
for(int i=0;i<n;i++)
ans+=a[i]*a[i]+b[i]*b[i],dif+=a[i]-b[i];
long long t_ans=0x3f3f3f3f*0x3f3f3f3f;
for(int i=-m;i<=m;i++)
t_ans=min(t_ans,n*i*i-2*i*dif);
ans+=t_ans; int t=1;
while(t<2*n) t*=2;
reverse(a,a+n);
for(int i=0;i<n;i++)
A1[i]=a[i],B1[i]=b[i];
FFT(A1,t,false);
FFT(B1,t,false);
for(int i=0;i<t;i++)
A1[i]*=B1[i];
FFT(A1,t,true);
for(int i=0;i<t;i++)
A1[i].real()/=t; reverse(a,a+n);
reverse(b,b+n);
for(int i=0;i<n;i++)
A2[i]=a[i],B2[i]=b[i];
FFT(A2,t,false);
FFT(B2,t,false);
for(int i=0;i<t;i++)
A2[i]*=B2[i];
FFT(A2,t,true);
for(int i=0;i<t;i++)
A2[i].real()/=t; t_ans=(long long)(2*floor(A2[n-1].real()+0.5));
for(int i=1;i<n;i++)
t_ans=max(t_ans,(long long)(2*floor(A1[i-1].real()+A2[n-i-1].real()+0.5)));
ans-=t_ans;
printf("%lld",ans);
return 0;
}

[Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)的更多相关文章

  1. LUOGU P3723 [AH2017/HNOI2017]礼物 (fft)

    传送门 解题思路 首先我们设变化量为\(r\),那么最终的答案就可以写成 : \[ ans=min(\sum\limits_{i=1}^n(a_i-b_i+r)^2) \] \[ ans=min(\s ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  4. 洛谷P3723 [AH2017/HNOI2017]礼物(FFT)

    传送门 首先,两个数同时增加自然数值相当于只有其中一个数增加(此增加量可以小于0) 我们令$x$为当前的增加量,${a},{b}$分别为旋转后的两个数列,那么$$ans=\sum_{i=1}^n(a_ ...

  5. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  6. Luogu 3723 [AH2017/HNOI2017]礼物

    BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...

  7. 洛谷P3723 [AH2017/HNOI2017]礼物

    吴迪说他化学会考上十分钟就想出来了,太神了%%%不过我也十分钟 但是调了一个多小时啊大草 懒得人话翻译了,自己康吧: 我的室友(真的是室友吗?)最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决 ...

  8. 笔记-[AH2017/HNOI2017]礼物

    笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...

  9. bzoj 4827: [Hnoi2017]礼物 [fft]

    4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...

随机推荐

  1. CentOS7 【linux系统】配置 JDK 教程

    1. 下载 [linux版本] JDK 1.8 的包. 2. 导入linux系统里面. 如何导入,下载一个winSCP 软件 破解安装,然后再linux 系统里面 查询IP,连接即可. 在linux解 ...

  2. Python其他数据结构collection模块-namtuple defaultdict deque Queue Counter OrderDict arrary

    nametuple 是tuple扩展子类,命名元组,其实本质上简单类对象 from collections import namedtuple info = namedtuple("Info ...

  3. Python-设置文件缓冲类型

    案例: 将文件内容写入到硬件设备时候,使用系统调用,这类IO操作时间长,为了减小IO操作,通常会使用缓冲区(有足够多数据才能调用). 文件缓冲行为分为:全缓冲,行缓冲,无缓冲 如何解决? open(' ...

  4. 搭建实用深度学习环境(Ubuntu16.10+Theano0.8.2+Tensorflow0.11.0rc1+Keras1.1.0)

    在动手安装之前,首先要确定硬件,系统,准备安装软件的版本,确定这些软硬件之间是否相互支持或兼容.本文安装的主要环境和软件如下: Ubuntu16.10+CUDA8.0(cudnn5.1,CNMEM)+ ...

  5. Python练习题 014:完数

    [Python练习题 014] 一个数如果恰好等于它的因子之和,这个数就称为"完数".例如6=1+2+3.编程找出1000以内的所有完数. -------------------- ...

  6. 第一个随笔 Just For Test, Nothing Else

    第一个随笔 Just For Test, Nothing Else 注册了第一个博客,希望以后能添加点什么吧

  7. Go语言中的常见的几个坑

    目录 1.for range 2.defer与闭包 3.map内存溢出 4.协程泄漏 5.http手动关闭 记录一下日常中遇到的几个坑,加深一下印象. 1.for range 这个是比较常见的问题了, ...

  8. 多测师讲解自动化测试 _RF自定义关键字_高级讲师肖sir

    RF自定义关键字 在rf中叫关键字 在python中就叫做函数 或实例方法 我们自己可以写自定义关键字 自己创建一个库===库里面去创建模块===模块里面创建类和实例方法==>rf导入和引用 库 ...

  9. jvm堆内存和GC简介

    最近经常遇到jvm内存问题,觉得还是有必要整理下jvm内存的相关逻辑,这里只描述jvm堆内存,对外内存暂不阐述. jvm内存简图 jvm内存分为堆内存和非堆内存,堆内存分为年轻代.老年代,非堆内存里只 ...

  10. python知识点整理一

    1.数组元素之和 解法一 from functools import reduce list=[1,3,5,7,9,34] print(reduce(lambda x,y:x+y,list)) 解法二 ...