这节课主要针对字符串/序列上的问题,了解如果使用动态规划进行求解。上节课我们也讲过使用前缀和后缀的概念,他们如下所示:

接下来,我们通过三个问题来深入了解下动态规划使用前缀、后缀和子串怎么去解决括号问题,编辑距离,背包问题

一、括号问题 Parenthesization

在进行一些列矩阵乘法时,我们如果设计括号,可以使计算更加高效?

解决过程如下图所示:

  1. 子问题:求矩阵们A的最优相乘方式;
  2. 猜:上一次矩阵相乘应在哪?
  3. 递归:最小化矩阵相乘的损失;
  4. 拓扑排序:增加子串的大小;
  5. 原问题:DP(0, n);

二、编辑距离 Edit Dsitance

给定两个字串x和y,让x变成y的最廉价的字符编辑操作是怎样的?编辑距离问题在很多地方有应用,例如:拼写纠正,DNA编辑和找到最长公共子序列。

它的动态规划解题步骤如下:

  1. 子问题:在x[i:]和y[j:]后缀上做距离编辑了;
  2. 猜:是使用替换,插入还是删除操作;
  3. 递归:选择能最小化编辑损失的操作;
  4. 拓扑排序:相当于在DAG中找最短路径;
  5. 原问题:DP(0, 0)。

三、背包问题 Knapsack

假设你有n个物品,单个物品占用空间是si,价值是vi,请问如何往空间为S的塞进哪些物品能使它们价值最大?该问题动态规划解题步骤如下:

  1. 子问题:第i个物体的前缀和剩余空间X;
  2. 猜:是否将第i个物体放入背包;
  3. 递归:选择能最大化价值且不超过背包容量的操作;

注:这个伪polynomial时间我也不太了解(好像是说该动态规划的时间介于polynomial时间和指数时间之间),后续有待补充。

[MIT6.006] 21. Daynamic Programming III: Parenthesization, Edit Distance, Knapsack 动态规划III:括号问题,编辑距离,背包问题的更多相关文章

  1. [MIT6.006] 20. Daynamic Programming II: Text Justification, Blackjack 动态规划II:文本对齐,黑杰克

    这节课通过讲解动态规划在文本对齐(Text Justification)和黑杰克(Blackjack)上的求解过程,来帮助我们理解动态规划的通用求解的五个步骤: 动态规划求解的五个"简单&q ...

  2. [MIT6.006] 22. Daynamic Programming IV: Guitar Fingering, Tetris, Super Mario Bro. 动态规划IV:吉他指弹,俄罗斯方块,超级玛丽奥

    之前我们讲到动态规划五步中有个Guessing猜,一般情况下猜有两种情况: 在猜和递归上:猜的是用于解决更大问题的子问题: 在子问题定义上:如果要猜更多,就要增加更多子问题. 下面我们来看如果像背包问 ...

  3. [MIT6.006] 19. Daynamic Programming I: Fibonacci, Shortest Path 动态规划I:斐波那契,最短路径

    这节课讲动态规划的内容,动态规划是一种通用且有效的算法设计思路,它的主要成分是"子问题"+"重用".它可以用于斐波那契和最短路径等问题的求解上. 一.斐波那契 ...

  4. [Locked] One Edit Distance

    One Edit Distance Given two strings S and T, determine if they are both one edit distance apart. 分析: ...

  5. 利用编辑距离(Edit Distance)计算两个字符串的相似度

    利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可 ...

  6. [MIT6.006] 1. Algorithmic Thinking, Peak Finding 算法思维,峰值寻找

    [MIT6.006] 系列笔记将记录我观看<MIT6.006 Introduction to Algorithms, Fall 2011>的课程内容和一些自己补充扩展的知识点.该课程主要介 ...

  7. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

  8. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. LintCode Edit Distance

    LintCode Edit Distance Given two words word1 and word2, find the minimum number of steps required to ...

随机推荐

  1. 怎么快速从产品助理/初级 PM 成长为高级 PM?

    一般想成为一枚产品经理的同学,如果没有经过系统的学习,都是从产品专员/助理开始做起的~ 那要想快速从产品助理/初级 PM 成长为高级 PM,以下这几点必不可少 直接上干货~ 全文篇幅较长,可以点赞收藏 ...

  2. str常用操作方法

    1. 索引(即下标) s = 'ABCDEFGHIJKLMN' s1 = s[0] print('s[0] = ' + s1) #s[0] = A print('s[3] = '+ s[3]) #s[ ...

  3. C++调用全局函数与类成员函数

    void testfunc(void *param) { printf("\n\tcall global function %s\n", param); } void *GetCl ...

  4. SSM中 web.xml配置文件

    <!--核心监听器 当tomcat(web容器,应用服务器,web服务器)启动的时候创建spring 工厂类对象,绑定到tomcat上下文中 --> <listener> &l ...

  5. 栈&队列&并查集&哈希表(julyedu网课整理)

    date: 2018-11-25 08:31:30 updated: 2018-11-25 08:31:30 栈&队列&并查集&哈希表(julyedu网课整理) 栈和队列 1. ...

  6. NMS总结

    目录 NMS总结 一. NMS 二. Soft-NMS 三. IOU-Guided NMS 四. Softer-NMS 五. DIOU-NMS 六. 总结 NMS总结 一. NMS 目标检测:同一个类 ...

  7. 大二逃课总结的1.2w字的计算机网络知识!扫盲!

    本文是我在大二学习计算机网络期间整理, 大部分内容都来自于谢希仁老师的<计算机网络>这本书. 为了内容更容易理解,我对之前的整理进行了一波重构,并配上了一些相关的示意图便于理解. @ 目录 ...

  8. 如何处理 Kubeadm 搭建的集群证书过期问题

    Kubeadm 证书过期处理 以下内容参考了如下链接:https://www.cnblogs.com/skymyyang/p/11093686.html 一.处理证书已过期的集群 使用 kubeadm ...

  9. 在充电桩联网部署方案中4G DTU的优势是什么

    充电桩作为电动汽车充电生态链的一环,具有非常重要的作用,成都远向电子为电动车充电桩.充电站提供专业的无线通信组网产品与技术解决方案,协助充电桩厂家.充电桩运营商.商业充电服务商实现:充电桩设备工作状态 ...

  10. python之冒泡排序改进

    冒泡排序改进 关注公众号"轻松学编程"了解更多. 一.普通冒泡排序 [22,3,1,6,7,8,2,5] 普通冒泡排序 思路: 第一趟排序 从下标0开始,取出对应的值22 22和3 ...