在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化:

1. 只支持等值连接

2. 底层会将写的HQL语句转换为MapReduce,并且reduce会将join语句中除最后一个表外都缓存起来

3. 当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce

具体的优化建议:

1. 合理的设置map和reduce数量

jvm重用。可在hadoop的mapred-site.xml中设置jvm被重用的次数,参数mapred.job.reuse.jvm.num.tasks

2. 对于任务重没有依赖关系的阶段开启并发执行,设置属性:set hive.exec.parallel=true

3. 查询分区表时,在查询条件中指定分区

4. 尽量使用left semi join 替代in、not in、exists

因为left semi join在执行时,对于左表中指定的一条记录,一旦在右表中找到立即停止扫描,效率更高

5. 当多个表进行查询时,从左到右表的大小顺序应该是从小到大。原因:hive在对每行记录操作时会把其他表先缓存起来,直到扫描最后的表进行计算

6. 对于经常join的表,针对join字段进行分桶,这样在join时不必全表扫描

7. 小表进行mapjoin

如果在join的表中,有一张表数据量较小,可以存于内存中,这样该表在和其他表join时可以直接在map端进行,省掉reduce过程,效率高。设置方式主要分两种:

1)自动方式

set hive.auto.convert.join=true;hive.mapjoin.smalltable.filesize,设置可以mapjoin的表的大小,默认值是25Mb

2)手动方式

select  /*+ mapjoin(A)*/  x.a,  y.b from t_x x join t_y y on x.id=y.id;

8. 同一种数据的多种处理:从一个数据源产生的多个数据聚合,无需每次聚合都需要重新扫描一次。

例如:任务重需要执行insert overwrite table t_y select * from t_x;和

insert overwrite table t_z select * from t_x;

可以优化成:from t_x insert overwrite table t_y select * insert overwrite table t_z select *

9. join中的数据倾斜处理

set hive.optimize.skewjoin=true;

set hive.skewjoin.key=100000;

当单个reduce节点处理数据阈值,会进行skewjoin,建议设置为平均数据量的2-4倍。

原理:会产生两个job,第一个job会将超过hive.skewjoin.key设置值的记录的key加上一些随机数,将这些相同的key打乱,然后分配到不同的节点上面进行计算。最后再启动一个job,在第一个job处理的基础上(即第一个job的reduce输出结果)再进行处理,将相同的key分发到相同的节点上处理。因为会产生两个job进行处理,在实际使用中还是要注意以及阈值的设置。

10. limit调优

limit语句通常是执行整个语句后返回部分结果。但通过设置参数set hive.limit.optimize.enable=true,将针对查询对元数据进行抽样。同时可能还需要设置以下两个参数:

set hive.limit.row.max.size=10000;设置最小的采样容量

set hive.limit.optimize.limit.file=20;设置最大的采样样本数

这种优化方式存在一个缺点:有可能部分数据永远不会被处理到


关注微信公众号:大数据学习与分享,获取更对技术干货

Hive Join优化的更多相关文章

  1. hive join 优化 --小表join大表

    1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去red ...

  2. Hive Join优化经验

    大表x小表 这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL // 开启mapjoin并设定map表大小 set hive.auto.co ...

  3. hive join 优化

    common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map ...

  4. hive的join优化

    “国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友 ...

  5. Hive篇---Hive使用优化

    一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式 ...

  6. Hive性能优化【严格模式、join优化、Map-Side聚合、JVM重用】

    一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询 ...

  7. Hive性能优化

    1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先 ...

  8. Hive任务优化(2)

    JOIN优化 1.大多数情况下,Hive会对每对Join连接对象启动一个MapReduce任务. 2.多表关联时,如果每个ON子句都使用相同的连接键的话,那么只会产生一个MapReduce Job. ...

  9. Hive性能优化上的一些总结

    https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据 ...

随机推荐

  1. 深入浅出学Java-HashMap

    一.概要 HashMap在JDK1.8之前的实现方式 数组+链表,但是在JDK1.8后对HashMap进行了底层优化,改为了由 数组+链表+红黑树实现,主要的目的是提高查找效率. 如下图所示: JDK ...

  2. SpringBoot整合Shiro+MD5+Salt+Redis实现认证和动态权限管理|前后端分离(下)----筑基后期

    写在前面 在上一篇文章<SpringBoot整合Shiro+MD5+Salt+Redis实现认证和动态权限管理(上)----筑基中期>当中,我们初步实现了SpringBoot整合Shiro ...

  3. nginx的变量系统

    本来想写一下nginx的脚本引擎的,但是看起来实在是有点庞大,一时间还不知道该从哪里写比较好.就先写一下他的变量系统吧,这是脚本引擎非常重要的组成部分. 首先为了表述清楚先规定几个术语吧 内置变量:n ...

  4. matplotlib画图教程,设置坐标轴标签和间距

    大家好,欢迎来到周四数据处理专题,我们今天继续matplotlib作图教程. 在上周的文章当中我们介绍了如何通过xlabel和ylabel设置坐标轴的名称,以及这两个函数的花式设置方法,可以设置出各种 ...

  5. rs232转网络

    rs232转网络 rs232转网络ZLAN5103可以实现RS232/485/422和TCP/IP之间进行透明数据转发.方便地使得串口设备连接到以太网和Internet,实现串口设备的网络化升级.支持 ...

  6. rs232转以太网

    rs232转以太网 rs232转以太网ZLAN5103可以实现RS232/485/422和TCP/IP之间进行透明数据转发.方便地使得串口设备连接到以太网和Internet,实现串口设备的网络化升级. ...

  7. Java中字符串相关操作(判断,增删,转换)

    1:判断字符串中是否包含某个字符(字符串): startsWith(): 这个方法有两个变体并测试如果一个字符串开头的指定索引指定的前缀或在默认情况下从字符串开始位置 此方法定义的语法如下: publ ...

  8. 安装Node,创建vue项目,运行及打包

    1.安装node js 下载地址:http://nodejs.cn/download/ 2.安装完成后运行Node.js command prompt(node -v查看安装版本) 3.安装npm(由 ...

  9. RDS 事务型数据库sql

    -- 替换json中数据 select SUBSTRING_INDEX(SUBSTRING_INDEX('[{"channelCode":"MOBIL",&qu ...

  10. 分布式锁结合SpringCache

    1.高并发缓存失效问题: 缓存穿透: 指查询一个一定不存在的数据,由于缓存不命中导致去查询数据库,但数据库也无此记录,我们没有将此次查询的null写入缓存,导致这个不存在的数据每次请求都要到存储层进行 ...