【noi 2.6_2000】&【poj 2127】 最长公共子上升序列 (DP+打印路径)
由于noi OJ上没有Special Judge,所以我是没有在这上面AC的。但是在POJ上A了。
题意如标题。
解法:f[i][j]表示a串前i个和b串前j个且包含b[j]的最长公共上升子序列长度
首先,可用3重循环得到,k循环找到b串j之前的最大长度子序列的结尾字符b[k],得以更新现在f[i][j]的状态。
然后,由于k循环的都在j之前,可发现k循环可略去,直接将满足上升的字符用临时变量存,每次j循环的都更新就好了。
具体上,最初f[i][j]=f[i-1][j],先继承好上一个状态,a[i]不加入选出的子序列(平常DP有表示“前...”的初始值都是像这样先可由前一个状态推出的)于是a[i]=b[j]时,就由之前存的最佳答案+1得到。最后由于这次的j是为了下次的a[i]=b[xx]做准备,所以若满足b[j]<a[i]且当前答案最佳,就更新临时储存的临时变量。
另外,打印路径有2种方法。用1维数组存是不行的,因为相同的一个i在和不同的j时,不能直接覆盖掉原来的答案。
1.用2个数组分别记录每次a[i]=b[j]之后ans+1的i和j;
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 typedef long long LL;
8 const int N=510;
9 LL a[N],b[N],s[N];
10 int f[N][N],u[N][N],v[N][N];
11
12 int main()
13 {
14 int n,m;
15 scanf("%d",&n);
16 for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
17 scanf("%d",&m);
18 for (int i=1;i<=m;i++) scanf("%lld",&b[i]);
19 memset(f,0,sizeof(f));
20 memset(u,0,sizeof(u));
21 memset(v,0,sizeof(v));
22 for (int i=1;i<=n;i++)
23 {
24 int p=0,q=0;
25 for (int j=1;j<=m;j++)
26 {
27 f[i][j]=f[i-1][j];
28 u[i][j]=u[i-1][j],v[i][j]=v[i-1][j];
29 if (a[i]==b[j]) f[i][j]=f[p][q]+1,u[i][j]=p,v[i][j]=q;
30 else if (a[i]>b[j] && f[i][j]>f[i][q]) p=i-1,q=j;
31 }
32 }
33 int t=1,cnt=0;
34 for (int j=2;j<=m;j++)
35 if (f[n][j]>f[n][t]) t=j;
36 printf("%d\n",f[n][t]);
37 s[++cnt]=b[t];
38 int x=n,y=t,xx,yy;
39 while (f[x][y])
40 s[++cnt]=b[y],xx=x,yy=y,x=u[xx][yy],y=v[xx][yy];
41 for (int i=cnt;i>=1;i--) printf("%lld ",s[i]);
42 return 0;
43 }
1
2.只存每次加入子序列的b[j],不断一个个递减i找到与b[j]匹配的a[i],得到下一个j的pre[i][j]。
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 typedef long long LL;
8 const int N=510;
9 LL a[N],b[N],s[N];
10 int f[N][N],pre[N][N];
11
12 int main()
13 {
14 int n,m;
15 scanf("%d",&n);
16 for (int i=1;i<=n;i++) scanf("%lld",&a[i]);
17 scanf("%d",&m);
18 for (int i=1;i<=m;i++) scanf("%lld",&b[i]);
19 memset(f,0,sizeof(f));
20 memset(pre,0,sizeof(pre));
21 for (int i=1;i<=n;i++)
22 {
23 int p=0;
24 for (int j=1;j<=m;j++)
25 {
26 f[i][j]=f[i-1][j];
27 if (a[i]==b[j]) f[i][j]=f[i][p]+1,pre[i][j]=p;
28 else if (a[i]>b[j] && f[i-1][j]>f[i-1][p]) p=j;
29 }
30 }
31 int t=1,cnt=0;
32 for (int j=2;j<=m;j++)
33 if (f[n][j]>f[n][t]) t=j;
34 printf("%d\n",f[n][t]);
35 int x=n,y=t;
36 while (f[x][y])
37 {
38 while(a[x]!=b[y]&&x) x--;
39 s[++cnt]=b[y];
40 y=pre[x][y];
41 }
42 for (int i=cnt;i>=1;i--) printf("%lld ",s[i]);
43 return 0;
44 }
2
【noi 2.6_2000】&【poj 2127】 最长公共子上升序列 (DP+打印路径)的更多相关文章
- POJ 2127 最长公共上升子序列
动态规划法: #include <iostream> #include <cstdio> #include <fstream> #include <algor ...
- poj 2774 最长公共子--弦hash或后缀数组或后缀自己主动机
http://poj.org/problem?id=2774 我想看看这里的后缀数组:http://blog.csdn.net/u011026968/article/details/22801015 ...
- openjudge-NOI 2.6-2000 最长公共子上升序列
题目链接:http://noi.openjudge.cn/ch0206/2000/ 题解: 裸题,不解释(题目有毒) #include<cstdio> #include<algori ...
- CodeForces 10D. LCIS 最长公共上升子序列模板题 + 打印路径
推荐一篇炒鸡赞的blog. 以下代码中有打印路径. #include <algorithm> #include <iostream> #include <cstring& ...
- poj 2774 最长公共子串 后缀数组
Long Long Message Time Limit: 4000MS Memory Limit: 131072K Total Submissions: 25752 Accepted: 10 ...
- POJ 1458 最长公共子序列(dp)
POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...
- 使用后缀数组寻找最长公共子字符串JavaScript版
后缀数组很久很久以前就出现了,具体的概念读者自行搜索,小菜仅略知一二,不便讨论. 本文通过寻找两个字符串的最长公共子字符串,演示了后缀数组的经典应用. 首先需要说明,小菜实现的这个后缀数组算法,并非标 ...
- uva 10066 The Twin Towers (最长公共子)
uva 10066 The Twin Towers 标题效果:最长公共子. 解题思路:最长公共子. #include<stdio.h> #include<string.h> # ...
- 最长公共子序列与最长公共字串 (dp)转载http://blog.csdn.net/u012102306/article/details/53184446
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
随机推荐
- 【SpringBoot1.x】SpringBoot1.x Web 开发
SpringBoot1.x Web 开发 文章源码 简介 SpringBoot 非常适合 Web 应用程序开发.可以使用嵌入式 Tomcat,Jetty 或 Undertow 轻松创建独立的 HTTP ...
- buuctf刷题之旅—web—EasySQL
打开环境,发现依旧是sql注入 GitHub上有源码(https://github.com/team-su/SUCTF-2019/tree/master/Web/easy_sql) index.php ...
- oracle常见进度查询脚本
1.查看索引创建进度 /* Formatted on 2019/8/20 下午 05:08:25 (QP5 v5.163.1008.3004) */ SELECT SID, DECODE (total ...
- 基于 WebRTC 实现自定义编码分辨率发送
2020年如果问什么技术领域最火?毫无疑问:音视频.2020年远程办公和在线教育的强势发展,都离不开音视频的身影,视频会议.在线教学.娱乐直播等都是音视频的典型应用场景. 更加丰富的使用场景更需要我们 ...
- java虚拟机入门(一)-jvm基础
转行学java之前,总是听着大佬们说着java像个渣男一样可以跨平台,一次编译到处运行,瞬间,我就坚定了学java的信念,哎呀妈呀,得劲.真的学java之后,好像渣男也不是那么好学的,尤其这货的必杀技 ...
- ldf和mdf文件怎么还原到sqlserver数据库
1.把mdf文件和ldf文件拷贝到数据库的默认路径C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA里:2.在sq ...
- list中map 的value值时间排序
public static void main(String[] args) { String sys=DateUtil.getTime().substring(0,5); System.out.pr ...
- C # 9.0的record
官方消息: c # 9.0已经过时了!早在五月份,我就在博客中介绍了 c # 9.0计划,下面是该文章的更新版本,以便与我们最终发布的计划相匹配. 对于每一个新的 c # 版本,我们都在努力提高常见编 ...
- Redis击穿、穿透、雪崩产生原因以及解决思路
击穿 大家都知道,计算机的瓶颈之一就是IO,为了解决内存与磁盘速度不匹配的问题,产生了缓存,将一些热点数据放在内存中,随用随取,降低连接到数据库的请求链接,避免数据库挂掉.需要注意的是,无论是击穿还是 ...
- poj 2112 最优挤奶方案
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 16550 Accepted: 5945 ...